ramalama-cuda - Man Page
Setting Up RamaLama with CUDA Support on Linux systems
This guide walks through the steps required to set up RamaLama with CUDA support.
Install the NVIDIA Container Toolkit
Follow the installation instructions provided in the NVIDIA Container Toolkit installation guide.
Installation using dnf/yum (For RPM based distros like Fedora)
Install the NVIDIA Container Toolkit packages
sudo dnf install -y nvidia-container-toolkit
Note: The Nvidia Container Toolkit is required on the host for running CUDA in containers.
Installation using APT (For Debian based distros like Ubuntu)
Configure the Production Repository
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
Update the packages list from the repository
sudo apt-get update
Install the NVIDIA Container Toolkit packages
sudo apt-get install -y nvidia-container-toolkit
Note: The Nvidia Container Toolkit is required for WSL to have CUDA resources while running a container.
Setting Up CUDA Support
For additional information see: Support for Container Device Interface
Generate the CDI specification file
sudo nvidia-ctk cdi generate --output=/etc/cdi/nvidia.yaml
Check the names of the generated devices
Open and edit the NVIDIA container runtime configuration:
nvidia-ctk cdi list INFO[0000] Found 1 CDI devices nvidia.com/gpu=all
Note: Generate a new CDI specification after any configuration change most notably when the driver is upgraded!
Testing the Setup
Based on this Documentation: Running a Sample Workload
Test the Installation Run the following command to verify setup:
podman run --rm --device=nvidia.com/gpu=all fedora nvidia-smi
Expected Output
Verify everything is configured correctly, with output similar to this:
Thu Dec 5 19:58:40 2024 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 565.72 Driver Version: 566.14 CUDA Version: 12.7 | |-----------------------------------------+------------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GeForce RTX 3080 On | 00000000:09:00.0 On | N/A | | 34% 24C P5 31W / 380W | 867MiB / 10240MiB | 7% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ +-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | 0 N/A N/A 35 G /Xwayland N/A | | 0 N/A N/A 35 G /Xwayland N/A | +-----------------------------------------------------------------------------------------+
See Also
History
Jan 2025, Originally compiled by Dan Walsh dwalsh@redhat.com ⟨mailto:dwalsh@redhat.com⟩