upmtr - Man Page
{up,op}mtr: multiply by Q from hptrd
Synopsis
Functions
subroutine cupmtr (side, uplo, trans, m, n, ap, tau, c, ldc, work, info)
CUPMTR
subroutine dopmtr (side, uplo, trans, m, n, ap, tau, c, ldc, work, info)
DOPMTR
subroutine sopmtr (side, uplo, trans, m, n, ap, tau, c, ldc, work, info)
SOPMTR
subroutine zupmtr (side, uplo, trans, m, n, ap, tau, c, ldc, work, info)
ZUPMTR
Detailed Description
Function Documentation
subroutine cupmtr (character side, character uplo, character trans, integer m, integer n, complex, dimension( * ) ap, complex, dimension( * ) tau, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( * ) work, integer info)
CUPMTR
Purpose:
CUPMTR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H where Q is a complex unitary matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of nq-1 elementary reflectors, as returned by CHPTRD using packed storage: if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
- Parameters
SIDE
SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangular packed storage used in previous call to CHPTRD; = 'L': Lower triangular packed storage used in previous call to CHPTRD.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
AP
AP is COMPLEX array, dimension (M*(M+1)/2) if SIDE = 'L' (N*(N+1)/2) if SIDE = 'R' The vectors which define the elementary reflectors, as returned by CHPTRD. AP is modified by the routine but restored on exit.
TAU
TAU is COMPLEX array, dimension (M-1) if SIDE = 'L' or (N-1) if SIDE = 'R' TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CHPTRD.
C
C is COMPLEX array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is COMPLEX array, dimension (N) if SIDE = 'L' (M) if SIDE = 'R'
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 148 of file cupmtr.f.
subroutine dopmtr (character side, character uplo, character trans, integer m, integer n, double precision, dimension( * ) ap, double precision, dimension( * ) tau, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) work, integer info)
DOPMTR
Purpose:
DOPMTR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of nq-1 elementary reflectors, as returned by DSPTRD using packed storage: if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
- Parameters
SIDE
SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangular packed storage used in previous call to DSPTRD; = 'L': Lower triangular packed storage used in previous call to DSPTRD.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
AP
AP is DOUBLE PRECISION array, dimension (M*(M+1)/2) if SIDE = 'L' (N*(N+1)/2) if SIDE = 'R' The vectors which define the elementary reflectors, as returned by DSPTRD. AP is modified by the routine but restored on exit.
TAU
TAU is DOUBLE PRECISION array, dimension (M-1) if SIDE = 'L' or (N-1) if SIDE = 'R' TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DSPTRD.
C
C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is DOUBLE PRECISION array, dimension (N) if SIDE = 'L' (M) if SIDE = 'R'
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 148 of file dopmtr.f.
subroutine sopmtr (character side, character uplo, character trans, integer m, integer n, real, dimension( * ) ap, real, dimension( * ) tau, real, dimension( ldc, * ) c, integer ldc, real, dimension( * ) work, integer info)
SOPMTR
Purpose:
SOPMTR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of nq-1 elementary reflectors, as returned by SSPTRD using packed storage: if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
- Parameters
SIDE
SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangular packed storage used in previous call to SSPTRD; = 'L': Lower triangular packed storage used in previous call to SSPTRD.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
AP
AP is REAL array, dimension (M*(M+1)/2) if SIDE = 'L' (N*(N+1)/2) if SIDE = 'R' The vectors which define the elementary reflectors, as returned by SSPTRD. AP is modified by the routine but restored on exit.
TAU
TAU is REAL array, dimension (M-1) if SIDE = 'L' or (N-1) if SIDE = 'R' TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SSPTRD.
C
C is REAL array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is REAL array, dimension (N) if SIDE = 'L' (M) if SIDE = 'R'
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 148 of file sopmtr.f.
subroutine zupmtr (character side, character uplo, character trans, integer m, integer n, complex*16, dimension( * ) ap, complex*16, dimension( * ) tau, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer info)
ZUPMTR
Purpose:
ZUPMTR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H where Q is a complex unitary matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of nq-1 elementary reflectors, as returned by ZHPTRD using packed storage: if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
- Parameters
SIDE
SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangular packed storage used in previous call to ZHPTRD; = 'L': Lower triangular packed storage used in previous call to ZHPTRD.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
AP
AP is COMPLEX*16 array, dimension (M*(M+1)/2) if SIDE = 'L' (N*(N+1)/2) if SIDE = 'R' The vectors which define the elementary reflectors, as returned by ZHPTRD. AP is modified by the routine but restored on exit.
TAU
TAU is COMPLEX*16 array, dimension (M-1) if SIDE = 'L' or (N-1) if SIDE = 'R' TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ZHPTRD.
C
C is COMPLEX*16 array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is COMPLEX*16 array, dimension (N) if SIDE = 'L' (M) if SIDE = 'R'
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 148 of file zupmtr.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.