unmrq - Man Page

{un,or}mrq: multiply by Q from gerqf

Synopsis

Functions

subroutine cunmrq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
CUNMRQ
subroutine dormrq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMRQ
subroutine sormrq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMRQ
subroutine zunmrq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMRQ

Detailed Description

Function Documentation

subroutine cunmrq (character side, character trans, integer m, integer n, integer k, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( * ) work, integer lwork, integer info)

CUNMRQ  

Purpose:

 CUNMRQ overwrites the general complex M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'C':      Q**H * C       C * Q**H

 where Q is a complex unitary matrix defined as the product of k
 elementary reflectors

       Q = H(1)**H H(2)**H . . . H(k)**H

 as returned by CGERQF. Q is of order M if SIDE = 'L' and of order N
 if SIDE = 'R'.
Parameters

SIDE

          SIDE is CHARACTER*1
          = 'L': apply Q or Q**H from the Left;
          = 'R': apply Q or Q**H from the Right.

TRANS

          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'C':  Conjugate transpose, apply Q**H.

M

          M is INTEGER
          The number of rows of the matrix C. M >= 0.

N

          N is INTEGER
          The number of columns of the matrix C. N >= 0.

K

          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.

A

          A is COMPLEX array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          CGERQF in the last k rows of its array argument A.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).

TAU

          TAU is COMPLEX array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by CGERQF.

C

          C is COMPLEX array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For good performance, LWORK should generally be larger.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 166 of file cunmrq.f.

subroutine dormrq (character side, character trans, integer m, integer n, integer k, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) work, integer lwork, integer info)

DORMRQ  

Purpose:

 DORMRQ overwrites the general real M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'T':      Q**T * C       C * Q**T

 where Q is a real orthogonal matrix defined as the product of k
 elementary reflectors

       Q = H(1) H(2) . . . H(k)

 as returned by DGERQF. Q is of order M if SIDE = 'L' and of order N
 if SIDE = 'R'.
Parameters

SIDE

          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.

TRANS

          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.

M

          M is INTEGER
          The number of rows of the matrix C. M >= 0.

N

          N is INTEGER
          The number of columns of the matrix C. N >= 0.

K

          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.

A

          A is DOUBLE PRECISION array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          DGERQF in the last k rows of its array argument A.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).

TAU

          TAU is DOUBLE PRECISION array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by DGERQF.

C

          C is DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For good performance, LWORK should generally be larger.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 165 of file dormrq.f.

subroutine sormrq (character side, character trans, integer m, integer n, integer k, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( ldc, * ) c, integer ldc, real, dimension( * ) work, integer lwork, integer info)

SORMRQ  

Purpose:

 SORMRQ overwrites the general real M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'T':      Q**T * C       C * Q**T

 where Q is a real orthogonal matrix defined as the product of k
 elementary reflectors

       Q = H(1) H(2) . . . H(k)

 as returned by SGERQF. Q is of order M if SIDE = 'L' and of order N
 if SIDE = 'R'.
Parameters

SIDE

          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.

TRANS

          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.

M

          M is INTEGER
          The number of rows of the matrix C. M >= 0.

N

          N is INTEGER
          The number of columns of the matrix C. N >= 0.

K

          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.

A

          A is REAL array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          SGERQF in the last k rows of its array argument A.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).

TAU

          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGERQF.

C

          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For good performance, LWORK should generally be larger.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 166 of file sormrq.f.

subroutine zunmrq (character side, character trans, integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer lwork, integer info)

ZUNMRQ  

Purpose:

 ZUNMRQ overwrites the general complex M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'C':      Q**H * C       C * Q**H

 where Q is a complex unitary matrix defined as the product of k
 elementary reflectors

       Q = H(1)**H H(2)**H . . . H(k)**H

 as returned by ZGERQF. Q is of order M if SIDE = 'L' and of order N
 if SIDE = 'R'.
Parameters

SIDE

          SIDE is CHARACTER*1
          = 'L': apply Q or Q**H from the Left;
          = 'R': apply Q or Q**H from the Right.

TRANS

          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'C':  Conjugate transpose, apply Q**H.

M

          M is INTEGER
          The number of rows of the matrix C. M >= 0.

N

          N is INTEGER
          The number of columns of the matrix C. N >= 0.

K

          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.

A

          A is COMPLEX*16 array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          ZGERQF in the last k rows of its array argument A.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).

TAU

          TAU is COMPLEX*16 array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by ZGERQF.

C

          C is COMPLEX*16 array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For good performance, LWORK should generally be larger.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 165 of file zunmrq.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK