uncsd - Man Page
{un,or}csd: ??
Synopsis
Functions
recursive subroutine cuncsd (jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work, lwork, rwork, lrwork, iwork, info)
CUNCSD
recursive subroutine dorcsd (jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work, lwork, iwork, info)
DORCSD
recursive subroutine sorcsd (jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work, lwork, iwork, info)
SORCSD
recursive subroutine zuncsd (jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work, lwork, rwork, lrwork, iwork, info)
ZUNCSD
Detailed Description
Function Documentation
recursive subroutine cuncsd (character jobu1, character jobu2, character jobv1t, character jobv2t, character trans, character signs, integer m, integer p, integer q, complex, dimension( ldx11, * ) x11, integer ldx11, complex, dimension( ldx12, * ) x12, integer ldx12, complex, dimension( ldx21, * ) x21, integer ldx21, complex, dimension( ldx22, * ) x22, integer ldx22, real, dimension( * ) theta, complex, dimension( ldu1, * ) u1, integer ldu1, complex, dimension( ldu2, * ) u2, integer ldu2, complex, dimension( ldv1t, * ) v1t, integer ldv1t, complex, dimension( ldv2t, * ) v2t, integer ldv2t, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer info)
CUNCSD
Purpose:
CUNCSD computes the CS decomposition of an M-by-M partitioned unitary matrix X: [ I 0 0 | 0 0 0 ] [ 0 C 0 | 0 -S 0 ] [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**H X = [-----------] = [---------] [---------------------] [---------] . [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] [ 0 S 0 | 0 C 0 ] [ 0 0 I | 0 0 0 ] X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P, (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which R = MIN(P,M-P,Q,M-Q).
- Parameters
JOBU1
JOBU1 is CHARACTER = 'Y': U1 is computed; otherwise: U1 is not computed.
JOBU2
JOBU2 is CHARACTER = 'Y': U2 is computed; otherwise: U2 is not computed.
JOBV1T
JOBV1T is CHARACTER = 'Y': V1T is computed; otherwise: V1T is not computed.
JOBV2T
JOBV2T is CHARACTER = 'Y': V2T is computed; otherwise: V2T is not computed.
TRANS
TRANS is CHARACTER = 'T': X, U1, U2, V1T, and V2T are stored in row-major order; otherwise: X, U1, U2, V1T, and V2T are stored in column- major order.
SIGNS
SIGNS is CHARACTER = 'O': The lower-left block is made nonpositive (the 'other' convention); otherwise: The upper-right block is made nonpositive (the 'default' convention).
M
M is INTEGER The number of rows and columns in X.
P
P is INTEGER The number of rows in X11 and X12. 0 <= P <= M.
Q
Q is INTEGER The number of columns in X11 and X21. 0 <= Q <= M.
X11
X11 is COMPLEX array, dimension (LDX11,Q) On entry, part of the unitary matrix whose CSD is desired.
LDX11
LDX11 is INTEGER The leading dimension of X11. LDX11 >= MAX(1,P).
X12
X12 is COMPLEX array, dimension (LDX12,M-Q) On entry, part of the unitary matrix whose CSD is desired.
LDX12
LDX12 is INTEGER The leading dimension of X12. LDX12 >= MAX(1,P).
X21
X21 is COMPLEX array, dimension (LDX21,Q) On entry, part of the unitary matrix whose CSD is desired.
LDX21
LDX21 is INTEGER The leading dimension of X11. LDX21 >= MAX(1,M-P).
X22
X22 is COMPLEX array, dimension (LDX22,M-Q) On entry, part of the unitary matrix whose CSD is desired.
LDX22
LDX22 is INTEGER The leading dimension of X11. LDX22 >= MAX(1,M-P).
THETA
THETA is REAL array, dimension (R), in which R = MIN(P,M-P,Q,M-Q). C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
U1
U1 is COMPLEX array, dimension (LDU1,P) If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
LDU1
LDU1 is INTEGER The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= MAX(1,P).
U2
U2 is COMPLEX array, dimension (LDU2,M-P) If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary matrix U2.
LDU2
LDU2 is INTEGER The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= MAX(1,M-P).
V1T
V1T is COMPLEX array, dimension (LDV1T,Q) If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary matrix V1**H.
LDV1T
LDV1T is INTEGER The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= MAX(1,Q).
V2T
V2T is COMPLEX array, dimension (LDV2T,M-Q) If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary matrix V2**H.
LDV2T
LDV2T is INTEGER The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >= MAX(1,M-Q).
WORK
WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA.
RWORK
RWORK is REAL array, dimension MAX(1,LRWORK) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), define the matrix in intermediate bidiagonal-block form remaining after nonconvergence. INFO specifies the number of nonzero PHI's.
LRWORK
LRWORK is INTEGER The dimension of the array RWORK. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the RWORK array, returns this value as the first entry of the work array, and no error message related to LRWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: CBBCSD did not converge. See the description of RWORK above for details.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 314 of file cuncsd.f.
recursive subroutine dorcsd (character jobu1, character jobu2, character jobv1t, character jobv2t, character trans, character signs, integer m, integer p, integer q, double precision, dimension( ldx11, * ) x11, integer ldx11, double precision, dimension( ldx12, * ) x12, integer ldx12, double precision, dimension( ldx21, * ) x21, integer ldx21, double precision, dimension( ldx22, * ) x22, integer ldx22, double precision, dimension( * ) theta, double precision, dimension( ldu1, * ) u1, integer ldu1, double precision, dimension( ldu2, * ) u2, integer ldu2, double precision, dimension( ldv1t, * ) v1t, integer ldv1t, double precision, dimension( ldv2t, * ) v2t, integer ldv2t, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer info)
DORCSD
Purpose:
DORCSD computes the CS decomposition of an M-by-M partitioned orthogonal matrix X: [ I 0 0 | 0 0 0 ] [ 0 C 0 | 0 -S 0 ] [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T X = [-----------] = [---------] [---------------------] [---------] . [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] [ 0 S 0 | 0 C 0 ] [ 0 0 I | 0 0 0 ] X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P, (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which R = MIN(P,M-P,Q,M-Q).
- Parameters
JOBU1
JOBU1 is CHARACTER = 'Y': U1 is computed; otherwise: U1 is not computed.
JOBU2
JOBU2 is CHARACTER = 'Y': U2 is computed; otherwise: U2 is not computed.
JOBV1T
JOBV1T is CHARACTER = 'Y': V1T is computed; otherwise: V1T is not computed.
JOBV2T
JOBV2T is CHARACTER = 'Y': V2T is computed; otherwise: V2T is not computed.
TRANS
TRANS is CHARACTER = 'T': X, U1, U2, V1T, and V2T are stored in row-major order; otherwise: X, U1, U2, V1T, and V2T are stored in column- major order.
SIGNS
SIGNS is CHARACTER = 'O': The lower-left block is made nonpositive (the 'other' convention); otherwise: The upper-right block is made nonpositive (the 'default' convention).
M
M is INTEGER The number of rows and columns in X.
P
P is INTEGER The number of rows in X11 and X12. 0 <= P <= M.
Q
Q is INTEGER The number of columns in X11 and X21. 0 <= Q <= M.
X11
X11 is DOUBLE PRECISION array, dimension (LDX11,Q) On entry, part of the orthogonal matrix whose CSD is desired.
LDX11
LDX11 is INTEGER The leading dimension of X11. LDX11 >= MAX(1,P).
X12
X12 is DOUBLE PRECISION array, dimension (LDX12,M-Q) On entry, part of the orthogonal matrix whose CSD is desired.
LDX12
LDX12 is INTEGER The leading dimension of X12. LDX12 >= MAX(1,P).
X21
X21 is DOUBLE PRECISION array, dimension (LDX21,Q) On entry, part of the orthogonal matrix whose CSD is desired.
LDX21
LDX21 is INTEGER The leading dimension of X11. LDX21 >= MAX(1,M-P).
X22
X22 is DOUBLE PRECISION array, dimension (LDX22,M-Q) On entry, part of the orthogonal matrix whose CSD is desired.
LDX22
LDX22 is INTEGER The leading dimension of X11. LDX22 >= MAX(1,M-P).
THETA
THETA is DOUBLE PRECISION array, dimension (R), in which R = MIN(P,M-P,Q,M-Q). C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
U1
U1 is DOUBLE PRECISION array, dimension (LDU1,P) If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
LDU1
LDU1 is INTEGER The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= MAX(1,P).
U2
U2 is DOUBLE PRECISION array, dimension (LDU2,M-P) If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal matrix U2.
LDU2
LDU2 is INTEGER The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= MAX(1,M-P).
V1T
V1T is DOUBLE PRECISION array, dimension (LDV1T,Q) If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal matrix V1**T.
LDV1T
LDV1T is INTEGER The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= MAX(1,Q).
V2T
V2T is DOUBLE PRECISION array, dimension (LDV2T,M-Q) If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal matrix V2**T.
LDV2T
LDV2T is INTEGER The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >= MAX(1,M-Q).
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), define the matrix in intermediate bidiagonal-block form remaining after nonconvergence. INFO specifies the number of nonzero PHI's.
LWORK
LWORK is INTEGER The dimension of the array WORK. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q))
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: DBBCSD did not converge. See the description of WORK above for details.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 295 of file dorcsd.f.
recursive subroutine sorcsd (character jobu1, character jobu2, character jobv1t, character jobv2t, character trans, character signs, integer m, integer p, integer q, real, dimension( ldx11, * ) x11, integer ldx11, real, dimension( ldx12, * ) x12, integer ldx12, real, dimension( ldx21, * ) x21, integer ldx21, real, dimension( ldx22, * ) x22, integer ldx22, real, dimension( * ) theta, real, dimension( ldu1, * ) u1, integer ldu1, real, dimension( ldu2, * ) u2, integer ldu2, real, dimension( ldv1t, * ) v1t, integer ldv1t, real, dimension( ldv2t, * ) v2t, integer ldv2t, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer info)
SORCSD
Purpose:
SORCSD computes the CS decomposition of an M-by-M partitioned orthogonal matrix X: [ I 0 0 | 0 0 0 ] [ 0 C 0 | 0 -S 0 ] [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T X = [-----------] = [---------] [---------------------] [---------] . [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] [ 0 S 0 | 0 C 0 ] [ 0 0 I | 0 0 0 ] X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P, (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which R = MIN(P,M-P,Q,M-Q).
- Parameters
JOBU1
JOBU1 is CHARACTER = 'Y': U1 is computed; otherwise: U1 is not computed.
JOBU2
JOBU2 is CHARACTER = 'Y': U2 is computed; otherwise: U2 is not computed.
JOBV1T
JOBV1T is CHARACTER = 'Y': V1T is computed; otherwise: V1T is not computed.
JOBV2T
JOBV2T is CHARACTER = 'Y': V2T is computed; otherwise: V2T is not computed.
TRANS
TRANS is CHARACTER = 'T': X, U1, U2, V1T, and V2T are stored in row-major order; otherwise: X, U1, U2, V1T, and V2T are stored in column- major order.
SIGNS
SIGNS is CHARACTER = 'O': The lower-left block is made nonpositive (the 'other' convention); otherwise: The upper-right block is made nonpositive (the 'default' convention).
M
M is INTEGER The number of rows and columns in X.
P
P is INTEGER The number of rows in X11 and X12. 0 <= P <= M.
Q
Q is INTEGER The number of columns in X11 and X21. 0 <= Q <= M.
X11
X11 is REAL array, dimension (LDX11,Q) On entry, part of the orthogonal matrix whose CSD is desired.
LDX11
LDX11 is INTEGER The leading dimension of X11. LDX11 >= MAX(1,P).
X12
X12 is REAL array, dimension (LDX12,M-Q) On entry, part of the orthogonal matrix whose CSD is desired.
LDX12
LDX12 is INTEGER The leading dimension of X12. LDX12 >= MAX(1,P).
X21
X21 is REAL array, dimension (LDX21,Q) On entry, part of the orthogonal matrix whose CSD is desired.
LDX21
LDX21 is INTEGER The leading dimension of X11. LDX21 >= MAX(1,M-P).
X22
X22 is REAL array, dimension (LDX22,M-Q) On entry, part of the orthogonal matrix whose CSD is desired.
LDX22
LDX22 is INTEGER The leading dimension of X11. LDX22 >= MAX(1,M-P).
THETA
THETA is REAL array, dimension (R), in which R = MIN(P,M-P,Q,M-Q). C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
U1
U1 is REAL array, dimension (LDU1,P) If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
LDU1
LDU1 is INTEGER The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= MAX(1,P).
U2
U2 is REAL array, dimension (LDU2,M-P) If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal matrix U2.
LDU2
LDU2 is INTEGER The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= MAX(1,M-P).
V1T
V1T is REAL array, dimension (LDV1T,Q) If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal matrix V1**T.
LDV1T
LDV1T is INTEGER The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= MAX(1,Q).
V2T
V2T is REAL array, dimension (LDV2T,M-Q) If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal matrix V2**T.
LDV2T
LDV2T is INTEGER The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >= MAX(1,M-Q).
WORK
WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), define the matrix in intermediate bidiagonal-block form remaining after nonconvergence. INFO specifies the number of nonzero PHI's.
LWORK
LWORK is INTEGER The dimension of the array WORK. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q))
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: SBBCSD did not converge. See the description of WORK above for details.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 295 of file sorcsd.f.
recursive subroutine zuncsd (character jobu1, character jobu2, character jobv1t, character jobv2t, character trans, character signs, integer m, integer p, integer q, complex*16, dimension( ldx11, * ) x11, integer ldx11, complex*16, dimension( ldx12, * ) x12, integer ldx12, complex*16, dimension( ldx21, * ) x21, integer ldx21, complex*16, dimension( ldx22, * ) x22, integer ldx22, double precision, dimension( * ) theta, complex*16, dimension( ldu1, * ) u1, integer ldu1, complex*16, dimension( ldu2, * ) u2, integer ldu2, complex*16, dimension( ldv1t, * ) v1t, integer ldv1t, complex*16, dimension( ldv2t, * ) v2t, integer ldv2t, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer info)
ZUNCSD
Purpose:
ZUNCSD computes the CS decomposition of an M-by-M partitioned unitary matrix X: [ I 0 0 | 0 0 0 ] [ 0 C 0 | 0 -S 0 ] [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**H X = [-----------] = [---------] [---------------------] [---------] . [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] [ 0 S 0 | 0 C 0 ] [ 0 0 I | 0 0 0 ] X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P, (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which R = MIN(P,M-P,Q,M-Q).
- Parameters
JOBU1
JOBU1 is CHARACTER = 'Y': U1 is computed; otherwise: U1 is not computed.
JOBU2
JOBU2 is CHARACTER = 'Y': U2 is computed; otherwise: U2 is not computed.
JOBV1T
JOBV1T is CHARACTER = 'Y': V1T is computed; otherwise: V1T is not computed.
JOBV2T
JOBV2T is CHARACTER = 'Y': V2T is computed; otherwise: V2T is not computed.
TRANS
TRANS is CHARACTER = 'T': X, U1, U2, V1T, and V2T are stored in row-major order; otherwise: X, U1, U2, V1T, and V2T are stored in column- major order.
SIGNS
SIGNS is CHARACTER = 'O': The lower-left block is made nonpositive (the 'other' convention); otherwise: The upper-right block is made nonpositive (the 'default' convention).
M
M is INTEGER The number of rows and columns in X.
P
P is INTEGER The number of rows in X11 and X12. 0 <= P <= M.
Q
Q is INTEGER The number of columns in X11 and X21. 0 <= Q <= M.
X11
X11 is COMPLEX*16 array, dimension (LDX11,Q) On entry, part of the unitary matrix whose CSD is desired.
LDX11
LDX11 is INTEGER The leading dimension of X11. LDX11 >= MAX(1,P).
X12
X12 is COMPLEX*16 array, dimension (LDX12,M-Q) On entry, part of the unitary matrix whose CSD is desired.
LDX12
LDX12 is INTEGER The leading dimension of X12. LDX12 >= MAX(1,P).
X21
X21 is COMPLEX*16 array, dimension (LDX21,Q) On entry, part of the unitary matrix whose CSD is desired.
LDX21
LDX21 is INTEGER The leading dimension of X11. LDX21 >= MAX(1,M-P).
X22
X22 is COMPLEX*16 array, dimension (LDX22,M-Q) On entry, part of the unitary matrix whose CSD is desired.
LDX22
LDX22 is INTEGER The leading dimension of X11. LDX22 >= MAX(1,M-P).
THETA
THETA is DOUBLE PRECISION array, dimension (R), in which R = MIN(P,M-P,Q,M-Q). C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
U1
U1 is COMPLEX*16 array, dimension (LDU1,P) If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
LDU1
LDU1 is INTEGER The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= MAX(1,P).
U2
U2 is COMPLEX*16 array, dimension (LDU2,M-P) If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary matrix U2.
LDU2
LDU2 is INTEGER The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= MAX(1,M-P).
V1T
V1T is COMPLEX*16 array, dimension (LDV1T,Q) If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary matrix V1**H.
LDV1T
LDV1T is INTEGER The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= MAX(1,Q).
V2T
V2T is COMPLEX*16 array, dimension (LDV2T,M-Q) If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary matrix V2**H.
LDV2T
LDV2T is INTEGER The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >= MAX(1,M-Q).
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA.
RWORK
RWORK is DOUBLE PRECISION array, dimension MAX(1,LRWORK) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), define the matrix in intermediate bidiagonal-block form remaining after nonconvergence. INFO specifies the number of nonzero PHI's.
LRWORK
LRWORK is INTEGER The dimension of the array RWORK. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the RWORK array, returns this value as the first entry of the work array, and no error message related to LRWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: ZBBCSD did not converge. See the description of RWORK above for details.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 314 of file zuncsd.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.