tptri - Man Page
tptri: triangular inverse
Synopsis
Functions
subroutine ctptri (uplo, diag, n, ap, info)
CTPTRI
subroutine dtptri (uplo, diag, n, ap, info)
DTPTRI
subroutine stptri (uplo, diag, n, ap, info)
STPTRI
subroutine ztptri (uplo, diag, n, ap, info)
ZTPTRI
Detailed Description
Function Documentation
subroutine ctptri (character uplo, character diag, integer n, complex, dimension( * ) ap, integer info)
CTPTRI
Purpose:
CTPTRI computes the inverse of a complex upper or lower triangular matrix A stored in packed format.
- Parameters
UPLO
UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.
DIAG
DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.
N
N is INTEGER The order of the matrix A. N >= 0.
AP
AP is COMPLEX array, dimension (N*(N+1)/2) On entry, the upper or lower triangular matrix A, stored columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. See below for further details. On exit, the (triangular) inverse of the original matrix, in the same packed storage format.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, A(i,i) is exactly zero. The triangular matrix is singular and its inverse can not be computed.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
A triangular matrix A can be transferred to packed storage using one of the following program segments: UPLO = 'U': UPLO = 'L': JC = 1 JC = 1 DO 2 J = 1, N DO 2 J = 1, N DO 1 I = 1, J DO 1 I = J, N AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) 1 CONTINUE 1 CONTINUE JC = JC + J JC = JC + N - J + 1 2 CONTINUE 2 CONTINUE
Definition at line 116 of file ctptri.f.
subroutine dtptri (character uplo, character diag, integer n, double precision, dimension( * ) ap, integer info)
DTPTRI
Purpose:
DTPTRI computes the inverse of a real upper or lower triangular matrix A stored in packed format.
- Parameters
UPLO
UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.
DIAG
DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.
N
N is INTEGER The order of the matrix A. N >= 0.
AP
AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the upper or lower triangular matrix A, stored columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. See below for further details. On exit, the (triangular) inverse of the original matrix, in the same packed storage format.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, A(i,i) is exactly zero. The triangular matrix is singular and its inverse can not be computed.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
A triangular matrix A can be transferred to packed storage using one of the following program segments: UPLO = 'U': UPLO = 'L': JC = 1 JC = 1 DO 2 J = 1, N DO 2 J = 1, N DO 1 I = 1, J DO 1 I = J, N AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) 1 CONTINUE 1 CONTINUE JC = JC + J JC = JC + N - J + 1 2 CONTINUE 2 CONTINUE
Definition at line 116 of file dtptri.f.
subroutine stptri (character uplo, character diag, integer n, real, dimension( * ) ap, integer info)
STPTRI
Purpose:
STPTRI computes the inverse of a real upper or lower triangular matrix A stored in packed format.
- Parameters
UPLO
UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.
DIAG
DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.
N
N is INTEGER The order of the matrix A. N >= 0.
AP
AP is REAL array, dimension (N*(N+1)/2) On entry, the upper or lower triangular matrix A, stored columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. See below for further details. On exit, the (triangular) inverse of the original matrix, in the same packed storage format.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, A(i,i) is exactly zero. The triangular matrix is singular and its inverse can not be computed.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
A triangular matrix A can be transferred to packed storage using one of the following program segments: UPLO = 'U': UPLO = 'L': JC = 1 JC = 1 DO 2 J = 1, N DO 2 J = 1, N DO 1 I = 1, J DO 1 I = J, N AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) 1 CONTINUE 1 CONTINUE JC = JC + J JC = JC + N - J + 1 2 CONTINUE 2 CONTINUE
Definition at line 116 of file stptri.f.
subroutine ztptri (character uplo, character diag, integer n, complex*16, dimension( * ) ap, integer info)
ZTPTRI
Purpose:
ZTPTRI computes the inverse of a complex upper or lower triangular matrix A stored in packed format.
- Parameters
UPLO
UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.
DIAG
DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.
N
N is INTEGER The order of the matrix A. N >= 0.
AP
AP is COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the upper or lower triangular matrix A, stored columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. See below for further details. On exit, the (triangular) inverse of the original matrix, in the same packed storage format.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, A(i,i) is exactly zero. The triangular matrix is singular and its inverse can not be computed.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
A triangular matrix A can be transferred to packed storage using one of the following program segments: UPLO = 'U': UPLO = 'L': JC = 1 JC = 1 DO 2 J = 1, N DO 2 J = 1, N DO 1 I = 1, J DO 1 I = J, N AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) 1 CONTINUE 1 CONTINUE JC = JC + J JC = JC + N - J + 1 2 CONTINUE 2 CONTINUE
Definition at line 116 of file ztptri.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.