tgexc - Man Page
tgexc: reorder generalized Schur form
Synopsis
Functions
subroutine ctgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)
CTGEXC
subroutine dtgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, work, lwork, info)
DTGEXC
subroutine stgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, work, lwork, info)
STGEXC
subroutine ztgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)
ZTGEXC
Detailed Description
Function Documentation
subroutine ctgexc (logical wantq, logical wantz, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldq, * ) q, integer ldq, complex, dimension( ldz, * ) z, integer ldz, integer ifst, integer ilst, integer info)
CTGEXC
Purpose:
CTGEXC reorders the generalized Schur decomposition of a complex matrix pair (A,B), using an unitary equivalence transformation (A, B) := Q * (A, B) * Z**H, so that the diagonal block of (A, B) with row index IFST is moved to row ILST. (A, B) must be in generalized Schur canonical form, that is, A and B are both upper triangular. Optionally, the matrices Q and Z of generalized Schur vectors are updated. Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
- Parameters
WANTQ
WANTQ is LOGICAL .TRUE. : update the left transformation matrix Q; .FALSE.: do not update Q.
WANTZ
WANTZ is LOGICAL .TRUE. : update the right transformation matrix Z; .FALSE.: do not update Z.
N
N is INTEGER The order of the matrices A and B. N >= 0.
A
A is COMPLEX array, dimension (LDA,N) On entry, the upper triangular matrix A in the pair (A, B). On exit, the updated matrix A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
B
B is COMPLEX array, dimension (LDB,N) On entry, the upper triangular matrix B in the pair (A, B). On exit, the updated matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Q
Q is COMPLEX array, dimension (LDQ,N) On entry, if WANTQ = .TRUE., the unitary matrix Q. On exit, the updated matrix Q. If WANTQ = .FALSE., Q is not referenced.
LDQ
LDQ is INTEGER The leading dimension of the array Q. LDQ >= 1; If WANTQ = .TRUE., LDQ >= N.
Z
Z is COMPLEX array, dimension (LDZ,N) On entry, if WANTZ = .TRUE., the unitary matrix Z. On exit, the updated matrix Z. If WANTZ = .FALSE., Z is not referenced.
LDZ
LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1; If WANTZ = .TRUE., LDZ >= N.
IFST
IFST is INTEGER
ILST
ILST is INTEGER Specify the reordering of the diagonal blocks of (A, B). The block with row index IFST is moved to row ILST, by a sequence of swapping between adjacent blocks.
INFO
INFO is INTEGER =0: Successful exit. <0: if INFO = -i, the i-th argument had an illegal value. =1: The transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is ill- conditioned. (A, B) may have been partially reordered, and ILST points to the first row of the current position of the block being moved.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
Definition at line 198 of file ctgexc.f.
subroutine dtgexc (logical wantq, logical wantz, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldq, * ) q, integer ldq, double precision, dimension( ldz, * ) z, integer ldz, integer ifst, integer ilst, double precision, dimension( * ) work, integer lwork, integer info)
DTGEXC
Purpose:
DTGEXC reorders the generalized real Schur decomposition of a real matrix pair (A,B) using an orthogonal equivalence transformation (A, B) = Q * (A, B) * Z**T, so that the diagonal block of (A, B) with row index IFST is moved to row ILST. (A, B) must be in generalized real Schur canonical form (as returned by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular. Optionally, the matrices Q and Z of generalized Schur vectors are updated. Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T
- Parameters
WANTQ
WANTQ is LOGICAL .TRUE. : update the left transformation matrix Q; .FALSE.: do not update Q.
WANTZ
WANTZ is LOGICAL .TRUE. : update the right transformation matrix Z; .FALSE.: do not update Z.
N
N is INTEGER The order of the matrices A and B. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the matrix A in generalized real Schur canonical form. On exit, the updated matrix A, again in generalized real Schur canonical form.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
B
B is DOUBLE PRECISION array, dimension (LDB,N) On entry, the matrix B in generalized real Schur canonical form (A,B). On exit, the updated matrix B, again in generalized real Schur canonical form (A,B).
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Q
Q is DOUBLE PRECISION array, dimension (LDQ,N) On entry, if WANTQ = .TRUE., the orthogonal matrix Q. On exit, the updated matrix Q. If WANTQ = .FALSE., Q is not referenced.
LDQ
LDQ is INTEGER The leading dimension of the array Q. LDQ >= 1. If WANTQ = .TRUE., LDQ >= N.
Z
Z is DOUBLE PRECISION array, dimension (LDZ,N) On entry, if WANTZ = .TRUE., the orthogonal matrix Z. On exit, the updated matrix Z. If WANTZ = .FALSE., Z is not referenced.
LDZ
LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1. If WANTZ = .TRUE., LDZ >= N.
IFST
IFST is INTEGER
ILST
ILST is INTEGER Specify the reordering of the diagonal blocks of (A, B). The block with row index IFST is moved to row ILST, by a sequence of swapping between adjacent blocks. On exit, if IFST pointed on entry to the second row of a 2-by-2 block, it is changed to point to the first row; ILST always points to the first row of the block in its final position (which may differ from its input value by +1 or -1). 1 <= IFST, ILST <= N.
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER =0: successful exit. <0: if INFO = -i, the i-th argument had an illegal value. =1: The transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is ill- conditioned. (A, B) may have been partially reordered, and ILST points to the first row of the current position of the block being moved.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
Definition at line 218 of file dtgexc.f.
subroutine stgexc (logical wantq, logical wantz, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldq, * ) q, integer ldq, real, dimension( ldz, * ) z, integer ldz, integer ifst, integer ilst, real, dimension( * ) work, integer lwork, integer info)
STGEXC
Purpose:
STGEXC reorders the generalized real Schur decomposition of a real matrix pair (A,B) using an orthogonal equivalence transformation (A, B) = Q * (A, B) * Z**T, so that the diagonal block of (A, B) with row index IFST is moved to row ILST. (A, B) must be in generalized real Schur canonical form (as returned by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular. Optionally, the matrices Q and Z of generalized Schur vectors are updated. Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T
- Parameters
WANTQ
WANTQ is LOGICAL .TRUE. : update the left transformation matrix Q; .FALSE.: do not update Q.
WANTZ
WANTZ is LOGICAL .TRUE. : update the right transformation matrix Z; .FALSE.: do not update Z.
N
N is INTEGER The order of the matrices A and B. N >= 0.
A
A is REAL array, dimension (LDA,N) On entry, the matrix A in generalized real Schur canonical form. On exit, the updated matrix A, again in generalized real Schur canonical form.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
B
B is REAL array, dimension (LDB,N) On entry, the matrix B in generalized real Schur canonical form (A,B). On exit, the updated matrix B, again in generalized real Schur canonical form (A,B).
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Q
Q is REAL array, dimension (LDQ,N) On entry, if WANTQ = .TRUE., the orthogonal matrix Q. On exit, the updated matrix Q. If WANTQ = .FALSE., Q is not referenced.
LDQ
LDQ is INTEGER The leading dimension of the array Q. LDQ >= 1. If WANTQ = .TRUE., LDQ >= N.
Z
Z is REAL array, dimension (LDZ,N) On entry, if WANTZ = .TRUE., the orthogonal matrix Z. On exit, the updated matrix Z. If WANTZ = .FALSE., Z is not referenced.
LDZ
LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1. If WANTZ = .TRUE., LDZ >= N.
IFST
IFST is INTEGER
ILST
ILST is INTEGER Specify the reordering of the diagonal blocks of (A, B). The block with row index IFST is moved to row ILST, by a sequence of swapping between adjacent blocks. On exit, if IFST pointed on entry to the second row of a 2-by-2 block, it is changed to point to the first row; ILST always points to the first row of the block in its final position (which may differ from its input value by +1 or -1). 1 <= IFST, ILST <= N.
WORK
WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER =0: successful exit. <0: if INFO = -i, the i-th argument had an illegal value. =1: The transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is ill- conditioned. (A, B) may have been partially reordered, and ILST points to the first row of the current position of the block being moved.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
Definition at line 218 of file stgexc.f.
subroutine ztgexc (logical wantq, logical wantz, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldq, * ) q, integer ldq, complex*16, dimension( ldz, * ) z, integer ldz, integer ifst, integer ilst, integer info)
ZTGEXC
Purpose:
ZTGEXC reorders the generalized Schur decomposition of a complex matrix pair (A,B), using an unitary equivalence transformation (A, B) := Q * (A, B) * Z**H, so that the diagonal block of (A, B) with row index IFST is moved to row ILST. (A, B) must be in generalized Schur canonical form, that is, A and B are both upper triangular. Optionally, the matrices Q and Z of generalized Schur vectors are updated. Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
- Parameters
WANTQ
WANTQ is LOGICAL .TRUE. : update the left transformation matrix Q; .FALSE.: do not update Q.
WANTZ
WANTZ is LOGICAL .TRUE. : update the right transformation matrix Z; .FALSE.: do not update Z.
N
N is INTEGER The order of the matrices A and B. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the upper triangular matrix A in the pair (A, B). On exit, the updated matrix A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
B
B is COMPLEX*16 array, dimension (LDB,N) On entry, the upper triangular matrix B in the pair (A, B). On exit, the updated matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Q
Q is COMPLEX*16 array, dimension (LDQ,N) On entry, if WANTQ = .TRUE., the unitary matrix Q. On exit, the updated matrix Q. If WANTQ = .FALSE., Q is not referenced.
LDQ
LDQ is INTEGER The leading dimension of the array Q. LDQ >= 1; If WANTQ = .TRUE., LDQ >= N.
Z
Z is COMPLEX*16 array, dimension (LDZ,N) On entry, if WANTZ = .TRUE., the unitary matrix Z. On exit, the updated matrix Z. If WANTZ = .FALSE., Z is not referenced.
LDZ
LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1; If WANTZ = .TRUE., LDZ >= N.
IFST
IFST is INTEGER
ILST
ILST is INTEGER Specify the reordering of the diagonal blocks of (A, B). The block with row index IFST is moved to row ILST, by a sequence of swapping between adjacent blocks.
INFO
INFO is INTEGER =0: Successful exit. <0: if INFO = -i, the i-th argument had an illegal value. =1: The transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is ill- conditioned. (A, B) may have been partially reordered, and ILST points to the first row of the current position of the block being moved.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
Definition at line 198 of file ztgexc.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.