tbmv - Man Page

tbmv: triangular matrix-vector multiply

Synopsis

Functions

subroutine ctbmv (uplo, trans, diag, n, k, a, lda, x, incx)
CTBMV
subroutine dtbmv (uplo, trans, diag, n, k, a, lda, x, incx)
DTBMV
subroutine stbmv (uplo, trans, diag, n, k, a, lda, x, incx)
STBMV
subroutine ztbmv (uplo, trans, diag, n, k, a, lda, x, incx)
ZTBMV

Detailed Description

Function Documentation

subroutine ctbmv (character uplo, character trans, character diag, integer n, integer k, complex, dimension(lda,*) a, integer lda, complex, dimension(*) x, integer incx)

CTBMV

Purpose:

 CTBMV  performs one of the matrix-vector operations

    x := A*x,   or   x := A**T*x,   or   x := A**H*x,

 where x is an n element vector and  A is an n by n unit, or non-unit,
 upper or lower triangular band matrix, with ( k + 1 ) diagonals.
Parameters

UPLO

          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.

TRANS

          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   x := A*x.

              TRANS = 'T' or 't'   x := A**T*x.

              TRANS = 'C' or 'c'   x := A**H*x.

DIAG

          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.

N

          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.

K

          K is INTEGER
           On entry with UPLO = 'U' or 'u', K specifies the number of
           super-diagonals of the matrix A.
           On entry with UPLO = 'L' or 'l', K specifies the number of
           sub-diagonals of the matrix A.
           K must satisfy  0 .le. K.

A

          A is COMPLEX array, dimension ( LDA, N ).
           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
           by n part of the array A must contain the upper triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row
           ( k + 1 ) of the array, the first super-diagonal starting at
           position 2 in row k, and so on. The top left k by k triangle
           of the array A is not referenced.
           The following program segment will transfer an upper
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = K + 1 - J
                    DO 10, I = MAX( 1, J - K ), J
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
           by n part of the array A must contain the lower triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row 1 of
           the array, the first sub-diagonal starting at position 1 in
           row 2, and so on. The bottom right k by k triangle of the
           array A is not referenced.
           The following program segment will transfer a lower
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = 1 - J
                    DO 10, I = J, MIN( N, J + K )
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Note that when DIAG = 'U' or 'u' the elements of the array A
           corresponding to the diagonal elements of the matrix are not
           referenced, but are assumed to be unity.

LDA

          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           ( k + 1 ).

X

          X is COMPLEX array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x. On exit, X is overwritten with the
           transformed vector x.

INCX

          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 185 of file ctbmv.f.

subroutine dtbmv (character uplo, character trans, character diag, integer n, integer k, double precision, dimension(lda,*) a, integer lda, double precision, dimension(*) x, integer incx)

DTBMV

Purpose:

 DTBMV  performs one of the matrix-vector operations

    x := A*x,   or   x := A**T*x,

 where x is an n element vector and  A is an n by n unit, or non-unit,
 upper or lower triangular band matrix, with ( k + 1 ) diagonals.
Parameters

UPLO

          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.

TRANS

          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   x := A*x.

              TRANS = 'T' or 't'   x := A**T*x.

              TRANS = 'C' or 'c'   x := A**T*x.

DIAG

          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.

N

          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.

K

          K is INTEGER
           On entry with UPLO = 'U' or 'u', K specifies the number of
           super-diagonals of the matrix A.
           On entry with UPLO = 'L' or 'l', K specifies the number of
           sub-diagonals of the matrix A.
           K must satisfy  0 .le. K.

A

          A is DOUBLE PRECISION array, dimension ( LDA, N )
           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
           by n part of the array A must contain the upper triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row
           ( k + 1 ) of the array, the first super-diagonal starting at
           position 2 in row k, and so on. The top left k by k triangle
           of the array A is not referenced.
           The following program segment will transfer an upper
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = K + 1 - J
                    DO 10, I = MAX( 1, J - K ), J
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
           by n part of the array A must contain the lower triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row 1 of
           the array, the first sub-diagonal starting at position 1 in
           row 2, and so on. The bottom right k by k triangle of the
           array A is not referenced.
           The following program segment will transfer a lower
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = 1 - J
                    DO 10, I = J, MIN( N, J + K )
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Note that when DIAG = 'U' or 'u' the elements of the array A
           corresponding to the diagonal elements of the matrix are not
           referenced, but are assumed to be unity.

LDA

          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           ( k + 1 ).

X

          X is DOUBLE PRECISION array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x. On exit, X is overwritten with the
           transformed vector x.

INCX

          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 185 of file dtbmv.f.

subroutine stbmv (character uplo, character trans, character diag, integer n, integer k, real, dimension(lda,*) a, integer lda, real, dimension(*) x, integer incx)

STBMV

Purpose:

 STBMV  performs one of the matrix-vector operations

    x := A*x,   or   x := A**T*x,

 where x is an n element vector and  A is an n by n unit, or non-unit,
 upper or lower triangular band matrix, with ( k + 1 ) diagonals.
Parameters

UPLO

          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.

TRANS

          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   x := A*x.

              TRANS = 'T' or 't'   x := A**T*x.

              TRANS = 'C' or 'c'   x := A**T*x.

DIAG

          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.

N

          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.

K

          K is INTEGER
           On entry with UPLO = 'U' or 'u', K specifies the number of
           super-diagonals of the matrix A.
           On entry with UPLO = 'L' or 'l', K specifies the number of
           sub-diagonals of the matrix A.
           K must satisfy  0 .le. K.

A

          A is REAL array, dimension ( LDA, N )
           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
           by n part of the array A must contain the upper triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row
           ( k + 1 ) of the array, the first super-diagonal starting at
           position 2 in row k, and so on. The top left k by k triangle
           of the array A is not referenced.
           The following program segment will transfer an upper
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = K + 1 - J
                    DO 10, I = MAX( 1, J - K ), J
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
           by n part of the array A must contain the lower triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row 1 of
           the array, the first sub-diagonal starting at position 1 in
           row 2, and so on. The bottom right k by k triangle of the
           array A is not referenced.
           The following program segment will transfer a lower
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = 1 - J
                    DO 10, I = J, MIN( N, J + K )
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Note that when DIAG = 'U' or 'u' the elements of the array A
           corresponding to the diagonal elements of the matrix are not
           referenced, but are assumed to be unity.

LDA

          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           ( k + 1 ).

X

          X is REAL array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x. On exit, X is overwritten with the
           transformed vector x.

INCX

          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 185 of file stbmv.f.

subroutine ztbmv (character uplo, character trans, character diag, integer n, integer k, complex*16, dimension(lda,*) a, integer lda, complex*16, dimension(*) x, integer incx)

ZTBMV

Purpose:

 ZTBMV  performs one of the matrix-vector operations

    x := A*x,   or   x := A**T*x,   or   x := A**H*x,

 where x is an n element vector and  A is an n by n unit, or non-unit,
 upper or lower triangular band matrix, with ( k + 1 ) diagonals.
Parameters

UPLO

          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.

TRANS

          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   x := A*x.

              TRANS = 'T' or 't'   x := A**T*x.

              TRANS = 'C' or 'c'   x := A**H*x.

DIAG

          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.

N

          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.

K

          K is INTEGER
           On entry with UPLO = 'U' or 'u', K specifies the number of
           super-diagonals of the matrix A.
           On entry with UPLO = 'L' or 'l', K specifies the number of
           sub-diagonals of the matrix A.
           K must satisfy  0 .le. K.

A

          A is COMPLEX*16 array, dimension ( LDA, N ).
           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
           by n part of the array A must contain the upper triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row
           ( k + 1 ) of the array, the first super-diagonal starting at
           position 2 in row k, and so on. The top left k by k triangle
           of the array A is not referenced.
           The following program segment will transfer an upper
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = K + 1 - J
                    DO 10, I = MAX( 1, J - K ), J
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
           by n part of the array A must contain the lower triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row 1 of
           the array, the first sub-diagonal starting at position 1 in
           row 2, and so on. The bottom right k by k triangle of the
           array A is not referenced.
           The following program segment will transfer a lower
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = 1 - J
                    DO 10, I = J, MIN( N, J + K )
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Note that when DIAG = 'U' or 'u' the elements of the array A
           corresponding to the diagonal elements of the matrix are not
           referenced, but are assumed to be unity.

LDA

          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           ( k + 1 ).

X

          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x. On exit, X is overwritten with the
           transformed vector x.

INCX

          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 185 of file ztbmv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK