syconvf_rook - Man Page
syconvf_rook: convert to/from hetrf_rook to hetrf_rk format
Synopsis
Functions
subroutine csyconvf_rook (uplo, way, n, a, lda, e, ipiv, info)
CSYCONVF_ROOK
subroutine dsyconvf_rook (uplo, way, n, a, lda, e, ipiv, info)
DSYCONVF_ROOK
subroutine ssyconvf_rook (uplo, way, n, a, lda, e, ipiv, info)
SSYCONVF_ROOK
subroutine zsyconvf_rook (uplo, way, n, a, lda, e, ipiv, info)
ZSYCONVF_ROOK
Detailed Description
Function Documentation
subroutine csyconvf_rook (character uplo, character way, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) e, integer, dimension( * ) ipiv, integer info)
CSYCONVF_ROOK
Purpose:
If parameter WAY = 'C': CSYCONVF_ROOK converts the factorization output format used in CSYTRF_ROOK provided on entry in parameter A into the factorization output format used in CSYTRF_RK (or CSYTRF_BK) that is stored on exit in parameters A and E. IPIV format for CSYTRF_ROOK and CSYTRF_RK (or CSYTRF_BK) is the same and is not converted. If parameter WAY = 'R': CSYCONVF_ROOK performs the conversion in reverse direction, i.e. converts the factorization output format used in CSYTRF_RK (or CSYTRF_BK) provided on entry in parameters A and E into the factorization output format used in CSYTRF_ROOK that is stored on exit in parameter A. IPIV format for CSYTRF_ROOK and CSYTRF_RK (or CSYTRF_BK) is the same and is not converted. CSYCONVF_ROOK can also convert in Hermitian matrix case, i.e. between formats used in CHETRF_ROOK and CHETRF_RK (or CHETRF_BK).
- Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix A. = 'U': Upper triangular = 'L': Lower triangular
WAY
WAY is CHARACTER*1 = 'C': Convert = 'R': Revert
N
N is INTEGER The order of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N) 1) If WAY ='C': On entry, contains factorization details in format used in CSYTRF_ROOK: a) all elements of the symmetric block diagonal matrix D on the diagonal of A and on superdiagonal (or subdiagonal) of A, and b) If UPLO = 'U': multipliers used to obtain factor U in the superdiagonal part of A. If UPLO = 'L': multipliers used to obtain factor L in the superdiagonal part of A. On exit, contains factorization details in format used in CSYTRF_RK or CSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D are stored on exit in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. 2) If WAY = 'R': On entry, contains factorization details in format used in CSYTRF_RK or CSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D are stored on exit in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. On exit, contains factorization details in format used in CSYTRF_ROOK: a) all elements of the symmetric block diagonal matrix D on the diagonal of A and on superdiagonal (or subdiagonal) of A, and b) If UPLO = 'U': multipliers used to obtain factor U in the superdiagonal part of A. If UPLO = 'L': multipliers used to obtain factor L in the superdiagonal part of A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
E
E is COMPLEX array, dimension (N) 1) If WAY ='C': On entry, just a workspace. On exit, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. 2) If WAY = 'R': On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. On exit, is not changed
IPIV
IPIV is INTEGER array, dimension (N) On entry, details of the interchanges and the block structure of D as determined: 1) by CSYTRF_ROOK, if WAY ='C'; 2) by CSYTRF_RK (or CSYTRF_BK), if WAY ='R'. The IPIV format is the same for all these routines. On exit, is not changed.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley
Definition at line 199 of file csyconvf_rook.f.
subroutine dsyconvf_rook (character uplo, character way, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) e, integer, dimension( * ) ipiv, integer info)
DSYCONVF_ROOK
Purpose:
If parameter WAY = 'C': DSYCONVF_ROOK converts the factorization output format used in DSYTRF_ROOK provided on entry in parameter A into the factorization output format used in DSYTRF_RK (or DSYTRF_BK) that is stored on exit in parameters A and E. IPIV format for DSYTRF_ROOK and DSYTRF_RK (or DSYTRF_BK) is the same and is not converted. If parameter WAY = 'R': DSYCONVF_ROOK performs the conversion in reverse direction, i.e. converts the factorization output format used in DSYTRF_RK (or DSYTRF_BK) provided on entry in parameters A and E into the factorization output format used in DSYTRF_ROOK that is stored on exit in parameter A. IPIV format for DSYTRF_ROOK and DSYTRF_RK (or DSYTRF_BK) is the same and is not converted.
- Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix A. = 'U': Upper triangular = 'L': Lower triangular
WAY
WAY is CHARACTER*1 = 'C': Convert = 'R': Revert
N
N is INTEGER The order of the matrix A. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N) 1) If WAY ='C': On entry, contains factorization details in format used in DSYTRF_ROOK: a) all elements of the symmetric block diagonal matrix D on the diagonal of A and on superdiagonal (or subdiagonal) of A, and b) If UPLO = 'U': multipliers used to obtain factor U in the superdiagonal part of A. If UPLO = 'L': multipliers used to obtain factor L in the superdiagonal part of A. On exit, contains factorization details in format used in DSYTRF_RK or DSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D are stored on exit in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. 2) If WAY = 'R': On entry, contains factorization details in format used in DSYTRF_RK or DSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D are stored on exit in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. On exit, contains factorization details in format used in DSYTRF_ROOK: a) all elements of the symmetric block diagonal matrix D on the diagonal of A and on superdiagonal (or subdiagonal) of A, and b) If UPLO = 'U': multipliers used to obtain factor U in the superdiagonal part of A. If UPLO = 'L': multipliers used to obtain factor L in the superdiagonal part of A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
E
E is DOUBLE PRECISION array, dimension (N) 1) If WAY ='C': On entry, just a workspace. On exit, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. 2) If WAY = 'R': On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. On exit, is not changed
IPIV
IPIV is INTEGER array, dimension (N) On entry, details of the interchanges and the block structure of D as determined: 1) by DSYTRF_ROOK, if WAY ='C'; 2) by DSYTRF_RK (or DSYTRF_BK), if WAY ='R'. The IPIV format is the same for all these routines. On exit, is not changed.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley
Definition at line 196 of file dsyconvf_rook.f.
subroutine ssyconvf_rook (character uplo, character way, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) e, integer, dimension( * ) ipiv, integer info)
SSYCONVF_ROOK
Purpose:
If parameter WAY = 'C': SSYCONVF_ROOK converts the factorization output format used in SSYTRF_ROOK provided on entry in parameter A into the factorization output format used in SSYTRF_RK (or SSYTRF_BK) that is stored on exit in parameters A and E. IPIV format for SSYTRF_ROOK and SSYTRF_RK (or SSYTRF_BK) is the same and is not converted. If parameter WAY = 'R': SSYCONVF_ROOK performs the conversion in reverse direction, i.e. converts the factorization output format used in SSYTRF_RK (or SSYTRF_BK) provided on entry in parameters A and E into the factorization output format used in SSYTRF_ROOK that is stored on exit in parameter A. IPIV format for SSYTRF_ROOK and SSYTRF_RK (or SSYTRF_BK) is the same and is not converted.
- Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix A. = 'U': Upper triangular = 'L': Lower triangular
WAY
WAY is CHARACTER*1 = 'C': Convert = 'R': Revert
N
N is INTEGER The order of the matrix A. N >= 0.
A
A is REAL array, dimension (LDA,N) 1) If WAY ='C': On entry, contains factorization details in format used in SSYTRF_ROOK: a) all elements of the symmetric block diagonal matrix D on the diagonal of A and on superdiagonal (or subdiagonal) of A, and b) If UPLO = 'U': multipliers used to obtain factor U in the superdiagonal part of A. If UPLO = 'L': multipliers used to obtain factor L in the superdiagonal part of A. On exit, contains factorization details in format used in SSYTRF_RK or SSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D are stored on exit in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. 2) If WAY = 'R': On entry, contains factorization details in format used in SSYTRF_RK or SSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D are stored on exit in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. On exit, contains factorization details in format used in SSYTRF_ROOK: a) all elements of the symmetric block diagonal matrix D on the diagonal of A and on superdiagonal (or subdiagonal) of A, and b) If UPLO = 'U': multipliers used to obtain factor U in the superdiagonal part of A. If UPLO = 'L': multipliers used to obtain factor L in the superdiagonal part of A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
E
E is REAL array, dimension (N) 1) If WAY ='C': On entry, just a workspace. On exit, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. 2) If WAY = 'R': On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. On exit, is not changed
IPIV
IPIV is INTEGER array, dimension (N) On entry, details of the interchanges and the block structure of D as determined: 1) by SSYTRF_ROOK, if WAY ='C'; 2) by SSYTRF_RK (or SSYTRF_BK), if WAY ='R'. The IPIV format is the same for all these routines. On exit, is not changed.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley
Definition at line 196 of file ssyconvf_rook.f.
subroutine zsyconvf_rook (character uplo, character way, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, integer info)
ZSYCONVF_ROOK
Purpose:
If parameter WAY = 'C': ZSYCONVF_ROOK converts the factorization output format used in ZSYTRF_ROOK provided on entry in parameter A into the factorization output format used in ZSYTRF_RK (or ZSYTRF_BK) that is stored on exit in parameters A and E. IPIV format for ZSYTRF_ROOK and ZSYTRF_RK (or ZSYTRF_BK) is the same and is not converted. If parameter WAY = 'R': ZSYCONVF_ROOK performs the conversion in reverse direction, i.e. converts the factorization output format used in ZSYTRF_RK (or ZSYTRF_BK) provided on entry in parameters A and E into the factorization output format used in ZSYTRF_ROOK that is stored on exit in parameter A. IPIV format for ZSYTRF_ROOK and ZSYTRF_RK (or ZSYTRF_BK) is the same and is not converted. ZSYCONVF_ROOK can also convert in Hermitian matrix case, i.e. between formats used in ZHETRF_ROOK and ZHETRF_RK (or ZHETRF_BK).
- Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix A. = 'U': Upper triangular = 'L': Lower triangular
WAY
WAY is CHARACTER*1 = 'C': Convert = 'R': Revert
N
N is INTEGER The order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N) 1) If WAY ='C': On entry, contains factorization details in format used in ZSYTRF_ROOK: a) all elements of the symmetric block diagonal matrix D on the diagonal of A and on superdiagonal (or subdiagonal) of A, and b) If UPLO = 'U': multipliers used to obtain factor U in the superdiagonal part of A. If UPLO = 'L': multipliers used to obtain factor L in the superdiagonal part of A. On exit, contains factorization details in format used in ZSYTRF_RK or ZSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D are stored on exit in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. 2) If WAY = 'R': On entry, contains factorization details in format used in ZSYTRF_RK or ZSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D are stored on exit in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. On exit, contains factorization details in format used in ZSYTRF_ROOK: a) all elements of the symmetric block diagonal matrix D on the diagonal of A and on superdiagonal (or subdiagonal) of A, and b) If UPLO = 'U': multipliers used to obtain factor U in the superdiagonal part of A. If UPLO = 'L': multipliers used to obtain factor L in the superdiagonal part of A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
E
E is COMPLEX*16 array, dimension (N) 1) If WAY ='C': On entry, just a workspace. On exit, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. 2) If WAY = 'R': On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. On exit, is not changed
IPIV
IPIV is INTEGER array, dimension (N) On entry, details of the interchanges and the block structure of D as determined: 1) by ZSYTRF_ROOK, if WAY ='C'; 2) by ZSYTRF_RK (or ZSYTRF_BK), if WAY ='R'. The IPIV format is the same for all these routines. On exit, is not changed.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley
Definition at line 199 of file zsyconvf_rook.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.