stevx - Man Page

stevx: eig, bisection

Synopsis

Functions

subroutine dstevx (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)
DSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
subroutine sstevx (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)
SSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Detailed Description

Function Documentation

subroutine dstevx (character jobz, character range, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision vl, double precision vu, integer il, integer iu, double precision abstol, integer m, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer, dimension( * ) ifail, integer info)

DSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices  

Purpose:

 DSTEVX computes selected eigenvalues and, optionally, eigenvectors
 of a real symmetric tridiagonal matrix A.  Eigenvalues and
 eigenvectors can be selected by specifying either a range of values
 or a range of indices for the desired eigenvalues.
Parameters

JOBZ

          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.

RANGE

          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found.
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found.
          = 'I': the IL-th through IU-th eigenvalues will be found.

N

          N is INTEGER
          The order of the matrix.  N >= 0.

D

          D is DOUBLE PRECISION array, dimension (N)
          On entry, the n diagonal elements of the tridiagonal matrix
          A.
          On exit, D may be multiplied by a constant factor chosen
          to avoid over/underflow in computing the eigenvalues.

E

          E is DOUBLE PRECISION array, dimension (max(1,N-1))
          On entry, the (n-1) subdiagonal elements of the tridiagonal
          matrix A in elements 1 to N-1 of E.
          On exit, E may be multiplied by a constant factor chosen
          to avoid over/underflow in computing the eigenvalues.

VL

          VL is DOUBLE PRECISION
          If RANGE='V', the lower bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.

VU

          VU is DOUBLE PRECISION
          If RANGE='V', the upper bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.

IL

          IL is INTEGER
          If RANGE='I', the index of the
          smallest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.

IU

          IU is INTEGER
          If RANGE='I', the index of the
          largest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.

ABSTOL

          ABSTOL is DOUBLE PRECISION
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to

                  ABSTOL + EPS *   max( |a|,|b| ) ,

          where EPS is the machine precision.  If ABSTOL is less
          than or equal to zero, then  EPS*|T|  will be used in
          its place, where |T| is the 1-norm of the tridiagonal
          matrix.

          Eigenvalues will be computed most accurately when ABSTOL is
          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
          If this routine returns with INFO>0, indicating that some
          eigenvectors did not converge, try setting ABSTOL to
          2*DLAMCH('S').

          See 'Computing Small Singular Values of Bidiagonal Matrices
          with Guaranteed High Relative Accuracy,' by Demmel and
          Kahan, LAPACK Working Note #3.

M

          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

W

          W is DOUBLE PRECISION array, dimension (N)
          The first M elements contain the selected eigenvalues in
          ascending order.

Z

          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
          contain the orthonormal eigenvectors of the matrix A
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          If an eigenvector fails to converge (INFO > 0), then that
          column of Z contains the latest approximation to the
          eigenvector, and the index of the eigenvector is returned
          in IFAIL.  If JOBZ = 'N', then Z is not referenced.
          Note: the user must ensure that at least max(1,M) columns are
          supplied in the array Z; if RANGE = 'V', the exact value of M
          is not known in advance and an upper bound must be used.

LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).

WORK

          WORK is DOUBLE PRECISION array, dimension (5*N)

IWORK

          IWORK is INTEGER array, dimension (5*N)

IFAIL

          IFAIL is INTEGER array, dimension (N)
          If JOBZ = 'V', then if INFO = 0, the first M elements of
          IFAIL are zero.  If INFO > 0, then IFAIL contains the
          indices of the eigenvectors that failed to converge.
          If JOBZ = 'N', then IFAIL is not referenced.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, then i eigenvectors failed to converge.
                Their indices are stored in array IFAIL.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 225 of file dstevx.f.

subroutine sstevx (character jobz, character range, integer n, real, dimension( * ) d, real, dimension( * ) e, real vl, real vu, integer il, integer iu, real abstol, integer m, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer, dimension( * ) iwork, integer, dimension( * ) ifail, integer info)

SSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices  

Purpose:

 SSTEVX computes selected eigenvalues and, optionally, eigenvectors
 of a real symmetric tridiagonal matrix A.  Eigenvalues and
 eigenvectors can be selected by specifying either a range of values
 or a range of indices for the desired eigenvalues.
Parameters

JOBZ

          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.

RANGE

          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found.
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found.
          = 'I': the IL-th through IU-th eigenvalues will be found.

N

          N is INTEGER
          The order of the matrix.  N >= 0.

D

          D is REAL array, dimension (N)
          On entry, the n diagonal elements of the tridiagonal matrix
          A.
          On exit, D may be multiplied by a constant factor chosen
          to avoid over/underflow in computing the eigenvalues.

E

          E is REAL array, dimension (max(1,N-1))
          On entry, the (n-1) subdiagonal elements of the tridiagonal
          matrix A in elements 1 to N-1 of E.
          On exit, E may be multiplied by a constant factor chosen
          to avoid over/underflow in computing the eigenvalues.

VL

          VL is REAL
          If RANGE='V', the lower bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.

VU

          VU is REAL
          If RANGE='V', the upper bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.

IL

          IL is INTEGER
          If RANGE='I', the index of the
          smallest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.

IU

          IU is INTEGER
          If RANGE='I', the index of the
          largest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.

ABSTOL

          ABSTOL is REAL
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to

                  ABSTOL + EPS *   max( |a|,|b| ) ,

          where EPS is the machine precision.  If ABSTOL is less
          than or equal to zero, then  EPS*|T|  will be used in
          its place, where |T| is the 1-norm of the tridiagonal
          matrix.

          Eigenvalues will be computed most accurately when ABSTOL is
          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
          If this routine returns with INFO>0, indicating that some
          eigenvectors did not converge, try setting ABSTOL to
          2*SLAMCH('S').

          See 'Computing Small Singular Values of Bidiagonal Matrices
          with Guaranteed High Relative Accuracy,' by Demmel and
          Kahan, LAPACK Working Note #3.

M

          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

W

          W is REAL array, dimension (N)
          The first M elements contain the selected eigenvalues in
          ascending order.

Z

          Z is REAL array, dimension (LDZ, max(1,M) )
          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
          contain the orthonormal eigenvectors of the matrix A
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          If an eigenvector fails to converge (INFO > 0), then that
          column of Z contains the latest approximation to the
          eigenvector, and the index of the eigenvector is returned
          in IFAIL.  If JOBZ = 'N', then Z is not referenced.
          Note: the user must ensure that at least max(1,M) columns are
          supplied in the array Z; if RANGE = 'V', the exact value of M
          is not known in advance and an upper bound must be used.

LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).

WORK

          WORK is REAL array, dimension (5*N)

IWORK

          IWORK is INTEGER array, dimension (5*N)

IFAIL

          IFAIL is INTEGER array, dimension (N)
          If JOBZ = 'V', then if INFO = 0, the first M elements of
          IFAIL are zero.  If INFO > 0, then IFAIL contains the
          indices of the eigenvectors that failed to converge.
          If JOBZ = 'N', then IFAIL is not referenced.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, then i eigenvectors failed to converge.
                Their indices are stored in array IFAIL.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 225 of file sstevx.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK