sgltglyap - Man Page

Name

sgltglyap — Single Precision

— Single precision solvers for generalized Lyapunov and Stein equations with triangular coefficient matrices.  

Synopsis

Functions

subroutine sla_tglyap_dag (trans, m, a, lda, b, ldb, x, ldx, scale, work, info)
Level-3 Bartels-Stewart Algorithm for the generalized Lyapunov equation with DAG scheduling.
subroutine sla_tgstein_dag (trans, m, a, lda, b, ldb, x, ldx, scale, work, info)
Level-3 Bartels-Stewart Algorithm for the generalized Stein equation with DAG scheduling.
subroutine sla_tglyap_l2 (trans, m, a, lda, b, ldb, x, ldx, scale, work, info)
Level-2 Bartels-Stewart Algorithm for the generalized Lyapunov equation.
subroutine sla_tglyap_l2_unopt (trans, m, a, lda, b, ldb, x, ldx, scale, work, info)
Level-2 Bartels-Stewart Algorithm for the generalized Lyapunov equation (Unoptimized)
subroutine sla_tgstein_l2 (trans, m, a, lda, b, ldb, x, ldx, scale, work, info)
Level-2 Bartels-Stewart Algorithm for the generalized Stein equation.
subroutine sla_tglyap_l3 (trans, m, a, lda, b, ldb, x, ldx, scale, work, info)
Level-3 Bartels-Stewart Algorithm for the generalized Lyapunov equation.
subroutine sla_tglyap_l3_2s (trans, m, a, lda, b, ldb, x, ldx, scale, work, info)
Level-3 Bartels-Stewart Algorithm for the generalized Lyapunov equation two stage.
subroutine sla_tgstein_l3 (trans, m, a, lda, b, ldb, x, ldx, scale, work, info)
Level-3 Bartels-Stewart Algorithm for the generalized Stein equation.
subroutine sla_tgstein_l3_2s (trans, m, a, lda, b, ldb, x, ldx, scale, work, info)
Level-3 Bartels-Stewart Algorithm for the generalized Stein equation (Two Stage)
recursive subroutine sla_tglyap_recursive (trans, m, a, lda, b, ldb, x, ldx, scale, work, info)
Recursive Blocking Algorithm for the generalized Lyapunov equation.
recursive subroutine sla_tgstein_recursive (trans, m, a, lda, b, ldb, x, ldx, scale, work, info)
Recursive Blocking Algorithm for the generalized Stein equation.
subroutine sla_ggstein_refine (trans, guess, m, a, lda, b, ldb, x, ldx, y, ldy, as, ldas, bs, ldbs, q, ldq, z, ldz, maxit, tau, convlog, work, ldwork, info)
Iterative Refinement for the Generalized Lyapunov Equations.

Detailed Description

Single precision solvers for generalized Lyapunov and Stein equations with triangular coefficient matrices.

Function Documentation

subroutine sla_ggstein_refine (character, dimension(1) trans, character, dimension(1) guess, integer m, real, dimension(lda, *) a, integer lda, real, dimension(ldb, *) b, integer ldb, real, dimension( ldx, *) x, integer ldx, real, dimension(ldy,*) y, integer ldy, real, dimension(ldas, *) as, integer ldas, real, dimension(ldbs,*) bs, integer ldbs, real, dimension(ldq, *) q, integer ldq, real, dimension(ldz, *) z, integer ldz, integer maxit, real tau, real, dimension(*) convlog, real, dimension(*) work, integer ldwork, integer info)

Iterative Refinement for the Generalized Lyapunov Equations.

Purpose:

!> SLA_GGSTEIN solves a generalized Stein equation of the following forms
!>
!>    A * X * A^T - B * X * B^T = SCALE * Y                                              (1)
!>
!> or
!>
!>    A^T * X * A - B^T * X * B =  SCALE * Y                                             (2)
!>
!>
!> where (A,B) is a M-by-M matrix pencil using iterative refinement.
!> The right hand side Y and the solution X are
!> M-by-M matrices.  The matrix pencil (A,B) needs to provide as the original data
!> as well as in generalized Schur decomposition since both are required in the
!> iterative refinement process.
!>
!>
Parameters

TRANS

!>          TRANS is CHARACTER
!>          Specifies the form of the system of equations with respect to A :
!>          == 'N':  Equation (1) is solved
!>          == 'T':  Equation (2) is solved
!>

GUESS

!>          GUESS is CHARACTER
!>          Specifies whether X contains an initial guess or nor not.
!>          =  'I': X contains an initial guess
!>          =  'N': No initial guess, X is set to zero at the begin of the iteration.
!>

M

!>          M is INTEGER
!>          The order of the matrices A and B.  M >= 0.
!>

A

!>          A is REAL array, dimension (LDA,M)
!>          The array A contains the original matrix A defining the equation.
!>

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!>

B

!>          B is REAL array, dimension (LDB,M)
!>          The array B contains the original matrix B defining the equation.
!>

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!>

X

!>          X is REAL array, dimension (LDX,M)
!>          On input, the array X contains the initial guess, if GUESS = 'I'.
!>          On output, the array X contains the solution X.
!>

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,M).
!>

Y

!>          Y is REAL array, dimension (LDY,M)
!>          On input, the array Y contains the right hand side Y.
!>          The array stays unchanged during the iteration.
!>

LDY

!>          LDY is INTEGER
!>          The leading dimension of the array Y.  LDY >= max(1,M).
!>

AS

!>          AS is REAL array, dimension (LDAS,M)
!>          The array AS contains the generalized Schur decomposition of the
!>          A.
!>

LDAS

!>          LDAS is INTEGER
!>          The leading dimension of the array AS.  LDAS >= max(1,M).
!>

BS

!>          BS is REAL array, dimension (LDBS,M)
!>          The array AS contains the generalized Schur decomposition of the
!>          B.
!>

LDBS

!>          LDBS is INTEGER
!>          The leading dimension of the array BS.  LDBS >= max(1,M).
!>

Q

!>          Q is REAL array, dimension (LDQ,M)
!>          The array Q contains the left generalized Schur vectors for (A,B) as returned by SGGES.
!>

LDQ

!>          LDQ is INTEGER
!>          The leading dimension of the array Q.  LDQ >= max(1,M).
!>

Z

!>          Z is REAL array, dimension (LDZ,M)
!>          The array Z contains the right generalized Schur vectors for (A,B) as returned by SGGES.
!>

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= max(1,M).
!>

MAXIT

!>          MAXIT is INTEGER
!>          On input, MAXIT contains the maximum number of iteration that are performed, MAXIT <= 100
!>          On exit, MAXIT contains the number of iteration steps taken by the algorithm.
!>

TAU

!>          TAU is REAL
!>          On input, TAU contains the additional security factor for the stopping criterion, typical values are 0.1
!>          On exit, TAU contains the last relative residual when the stopping criterion got valid.
!>

CONVLOG

!>          CONVLOG is REAL array, dimension (MAXIT)
!>          The CONVLOG array contains the convergence history of the iterative refinement. CONVLOG(I) contains the maximum
!>          relative residual before it is solved for the I-th time.
!>

WORK

!>          WORK is REAL array, dimension (MAX(1,LDWORK))
!>          Workspace for the algorithm. The optimal workspace is returned in LDWORK, if LDWORK == -1 on input. In this
!>          case no computations are performed.
!>

LDWORK

!>          LDWORK is INTEGER
!>          If LDWORK == -1 the subroutine will return the required size of the workspace in LDWORK on exit. No computations are
!>          performed and none of the arrays are referenced.
!>

INFO

!>          INFO is INTEGER
!>          == 0:  Success
!>          > 0:  Iteration failed in step INFO
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          = -50: Some of the internal settings like NB,... are incorrect.
!>
See also

SLA_TGSTEIN_L3

SLA_TGSTEIN_L2

SLA_TGSTEIN_L3_2S

SLA_TGSTEIN_DAG

SLA_TGSTEIN_RECURSIVE

Author

Martin Koehler, MPI Magdeburg

Date

January 2024

Definition at line 243 of file sla_ggstein_refine.f90.

subroutine sla_tglyap_dag (character, dimension(1) trans, integer m, real, dimension(lda, *) a, integer lda, real, dimension(ldb,*) b, integer ldb, real, dimension(ldx, *) x, integer ldx, real scale, real, dimension(*) work, integer info)

Level-3 Bartels-Stewart Algorithm for the generalized Lyapunov equation with DAG scheduling.

Purpose:

!>
!> SLA_TGLYAP_DAG solves a generalized Lyapunov  equation of the following forms
!>
!>    A * X * B^T + A * X * B^T = SCALE * Y                                              (2)
!>
!> or
!>
!>    A^T * X * B + A^T * X * B =  SCALE * Y                                             (1)
!>
!> where A is a M-by-M quasi upper triangular matrix, B is a M-by-M upper triangular,
!> and X and Y are symmetric  M-by-M matrices.
!> Typically the matrix pencil (A,B) is created by SGGES from LAPACK.
!>
Attention

The algorithm is implemented using BLAS level 3 operations and DAG .

Parameters

TRANS

!>          TRANS is CHARACTER
!>          Specifies the form of the system of equations with respect to A and B:
!>          == 'N':  Equation (1) is solved.
!>          == 'T':  Equation (2) is solved.
!>

M

!>          M is INTEGER
!>          The order of the matrices A and B.  M >= 0.
!>

A

!>          A is REAL array, dimension (LDA,M)
!>          The matrix A must be (quasi-) upper triangular.
!>

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!>

B

!>          B is REAL array, dimension (LDB,M)
!>          The matrix B must be upper triangular.
!>

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!>

X

!>          X is REAL array, dimension (LDX,N)
!>          On input, the matrix X contains the right hand side Y.
!>          On output, the matrix X contains the solution of Equation (1) or (2)
!>          as selected by TRANSA, TRANSB, and SGN.
!>          Right hand side Y and the solution X are M-by-N matrices.
!>

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,M).
!>

SCALE

!>          SCALE is REAL
!>          SCALE is a scaling factor to prevent the overflow in the result.
!>          If INFO == 0 then SCALE is 1.0 otherwise if one of the inner systems
!>          could not be solved correctly, 0 < SCALE <= 1 holds true.
!>

WORK

!>          WORK is REAL array, dimension LWORK
!>          Workspace for the algorithm.
!>          The workspace needs to queried before the running the computation.
!>          The query is performed by calling the subroutine with INFO == -1 on input.
!>          The required workspace is then returned in INFO.
!>

INFO

!>          INFO is INTEGER
!>
!>          On input:
!>            == -1 : Perform a workspace query
!>            <> -1: normal operation
!>
!>          On exit, workspace query:
!>            < 0 :  if INFO = -i, the i-th argument had an illegal value
!>            >= 0:  The value of INFO is the required number of elements in the workspace.
!>
!>          On exit, normal operation:
!>            == 0:  successful exit
!>            < 0:  if INFO = -i, the i-th argument had an illegal value
!>            > 0:  The equation is not solved correctly. One of the arising inner
!>                  system got singular.
!>
Author

Martin Koehler, MPI Magdeburg

Date

January 2024

Definition at line 154 of file sla_tglyap_dag.f90.

subroutine sla_tglyap_l2 (character, dimension(1) trans, integer m, real, dimension(lda, *) a, integer lda, real, dimension(ldb, *) b, integer ldb, real, dimension(ldx, *) x, integer ldx, real scale, real, dimension(*) work, integer info)

Level-2 Bartels-Stewart Algorithm for the generalized Lyapunov equation.

Purpose:

!>
!> SLA_TGLYAP_L2 solves a generalized Lyapunov  equation of the following forms
!>
!>    A * X * B^T + B * X * A^T = SCALE * Y                                              (1)
!>
!> or
!>
!>    A^T * X * B + B^T * X * A =  SCALE * Y                                             (2)
!>
!> where A is a M-by-M quasi upper triangular matrix, B is a M-by-M upper triangular,
!> and X and Y are symmetric  M-by-M matrices.
!> Typically the matrix pencil (A,B) is created by SGGES from LAPACK.
!>
Attention

The algorithm is implemented using BLAS level 2 operations.

Parameters

TRANS

!>          TRANS is CHARACTER
!>          Specifies the form of the system of equations with respect to A and B:
!>          == 'N':  Equation (1) is solved.
!>          == 'T':  Equation (2) is solved.
!>

M

!>          M is INTEGER
!>          The order of the matrices A and B.  M >= 0.
!>

A

!>          A is REAL array, dimension (LDA,M)
!>          The matrix A must be (quasi-) upper triangular.
!>

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!>

B

!>          B is REAL array, dimension (LDB,M)
!>          The matrix B must be upper triangular.
!>

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!>

X

!>          X is REAL array, dimension (LDX,N)
!>          On input, the matrix X contains the right hand side Y.
!>          On output, the matrix X contains the solution of Equation (1) or (2)
!>          as selected by TRANS.
!>          Right hand side Y and the solution X are M-by-N matrices.
!>

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,M).
!>

SCALE

!>          SCALE is REAL
!>          SCALE is a scaling factor to prevent the overflow in the result.
!>          If INFO == 0 then SCALE is 1.0 otherwise if one of the inner systems
!>          could not be solved correctly, 0 < SCALE <= 1 holds true.
!>

WORK

!>          WORK is REAL array, dimension LWORK
!>          Workspace for the algorithm.
!>          The workspace needs to queried before the running the computation.
!>          The query is performed by calling the subroutine with INFO == -1 on input.
!>          The required workspace is then returned in INFO.
!>

INFO

!>          INFO is INTEGER
!>
!>          On input:
!>            == -1 : Perform a workspace query
!>            <> -1: normal operation
!>
!>          On exit, workspace query:
!>            < 0 :  if INFO = -i, the i-th argument had an illegal value
!>            >= 0:  The value of INFO is the required number of elements in the workspace.
!>
!>          On exit, normal operation:
!>            == 0:  successful exit
!>            < 0:  if INFO = -i, the i-th argument had an illegal value
!>            > 0:  The equation is not solved correctly. One of the arising inner
!>                  system got singular.
!>
Author

Martin Koehler, MPI Magdeburg

Date

January 2024

Definition at line 155 of file sla_tglyap_l2.f90.

subroutine sla_tglyap_l2_unopt (character, dimension(1) trans, integer m, real, dimension(lda, *) a, integer lda, real, dimension(ldb, *) b, integer ldb, real, dimension(ldx, *) x, integer ldx, real scale, real, dimension(*) work, integer info)

Level-2 Bartels-Stewart Algorithm for the generalized Lyapunov equation (Unoptimized)

Purpose:

!>
!> SLA_TGLYAP_L2 solves a generalized Lyapunov  equation of the following forms
!>
!>    A * X * B^T + B * X * A^T = SCALE * Y                                              (1)
!>
!> or
!>
!>    A^T * X * B + B^T * X * A =  SCALE * Y                                             (2)
!>
!> where A is a M-by-M quasi upper triangular matrix, B is a M-by-M upper triangular,
!> and X and Y are symmetric  M-by-M matrices.
!> Typically the matrix pencil (A,B) is created by SGGES from LAPACK.
!>
Attention

The algorithm is implemented using BLAS level 2 operations but works with inefficient SSYR2 calls in the case TRANS='T'.

Parameters

TRANS

!>          TRANS is CHARACTER
!>          Specifies the form of the system of equations with respect to A and B:
!>          == 'N':  Equation (1) is solved.
!>          == 'T':  Equation (2) is solved.
!>

M

!>          M is INTEGER
!>          The order of the matrices A and B.  M >= 0.
!>

A

!>          A is REAL array, dimension (LDA,M)
!>          The matrix A must be (quasi-) upper triangular.
!>

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!>

B

!>          B is REAL array, dimension (LDB,M)
!>          The matrix B must be upper triangular.
!>

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!>

X

!>          X is REAL array, dimension (LDX,N)
!>          On input, the matrix X contains the right hand side Y.
!>          On output, the matrix X contains the solution of Equation (1) or (2)
!>          as selected by TRANS.
!>          Right hand side Y and the solution X are M-by-N matrices.
!>

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,M).
!>

SCALE

!>          SCALE is REAL
!>          SCALE is a scaling factor to prevent the overflow in the result.
!>          If INFO == 0 then SCALE is 1.0 otherwise if one of the inner systems
!>          could not be solved correctly, 0 < SCALE <= 1 holds true.
!>

WORK

!>          WORK is REAL array, dimension LWORK
!>          Workspace for the algorithm.
!>          The workspace needs to queried before the running the computation.
!>          The query is performed by calling the subroutine with INFO == -1 on input.
!>          The required workspace is then returned in INFO.
!>

INFO

!>          INFO is INTEGER
!>
!>          On input:
!>            == -1 : Perform a workspace query
!>            <> -1: normal operation
!>
!>          On exit, workspace query:
!>            < 0 :  if INFO = -i, the i-th argument had an illegal value
!>            >= 0:  The value of INFO is the required number of elements in the workspace.
!>
!>          On exit, normal operation:
!>            == 0:  successful exit
!>            < 0:  if INFO = -i, the i-th argument had an illegal value
!>            > 0:  The equation is not solved correctly. One of the arising inner
!>                  system got singular.
!>
Author

Martin Koehler, MPI Magdeburg

Date

January 2024

Definition at line 156 of file sla_tglyap_l2_unopt.f90.

subroutine sla_tglyap_l3 (character, dimension(1) trans, integer m, real, dimension(lda, *) a, integer lda, real, dimension(ldb, *) b, integer ldb, real, dimension(ldx, *) x, integer ldx, real scale, real, dimension(*) work, integer info)

Level-3 Bartels-Stewart Algorithm for the generalized Lyapunov equation.

Purpose:

!>
!> SLA_TGLYAP_L3 solves a generalized Lyapunov  equation of the following forms
!>
!>    A * X * B^T + B * X * A^T = SCALE * Y                                              (1)
!>
!> or
!>
!>    A^T * X * B + B^T * X * A =  SCALE * Y                                             (2)
!>
!> where A is a M-by-M quasi upper triangular matrix, B is a M-by-M upper triangular,
!> and X and Y are symmetric  M-by-M matrices.
!> Typically the matrix pencil (A,B) is created by SGGES from LAPACK.
!>
Attention

The algorithm is implemented using BLAS level 3 operations.

Parameters

TRANS

!>          TRANS is CHARACTER
!>          Specifies the form of the system of equations with respect to A and B:
!>          == 'N':  Equation (1) is solved.
!>          == 'T':  Equation (2) is solved.
!>

M

!>          M is INTEGER
!>          The order of the matrices A and B.  M >= 0.
!>

A

!>          A is REAL array, dimension (LDA,M)
!>          The matrix A must be (quasi-) upper triangular.
!>

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!>

B

!>          B is REAL array, dimension (LDB,M)
!>          The matrix B must be upper triangular.
!>

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!>

X

!>          X is REAL array, dimension (LDX,N)
!>          On input, the matrix X contains the right hand side Y.
!>          On output, the matrix X contains the solution of Equation (1) or (2)
!>          as selected by TRANSA, TRANSB, and SGN.
!>          Right hand side Y and the solution X are M-by-N matrices.
!>

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,M).
!>

SCALE

!>          SCALE is REAL
!>          SCALE is a scaling factor to prevent the overflow in the result.
!>          If INFO == 0 then SCALE is 1.0 otherwise if one of the inner systems
!>          could not be solved correctly, 0 < SCALE <= 1 holds true.
!>

WORK

!>          WORK is REAL array, dimension LWORK
!>          Workspace for the algorithm.
!>          The workspace needs to queried before the running the computation.
!>          The query is performed by calling the subroutine with INFO == -1 on input.
!>          The required workspace is then returned in INFO.
!>

INFO

!>          INFO is INTEGER
!>
!>          On input:
!>            == -1 : Perform a workspace query
!>            <> -1: normal operation
!>
!>          On exit, workspace query:
!>            < 0 :  if INFO = -i, the i-th argument had an illegal value
!>            >= 0:  The value of INFO is the required number of elements in the workspace.
!>
!>          On exit, normal operation:
!>            == 0:  successful exit
!>            < 0:  if INFO = -i, the i-th argument had an illegal value
!>            > 0:  The equation is not solved correctly. One of the arising inner
!>                  system got singular.
!>
Author

Martin Koehler, MPI Magdeburg

Date

January 2024

Definition at line 154 of file sla_tglyap_l3.f90.

subroutine sla_tglyap_l3_2s (character, dimension(1) trans, integer m, real, dimension(lda, *) a, integer lda, real, dimension(ldb, *) b, integer ldb, real, dimension(ldx, *) x, integer ldx, real scale, real, dimension(*) work, integer info)

Level-3 Bartels-Stewart Algorithm for the generalized Lyapunov equation two stage.

Purpose:

!>
!> SLA_TGLYAP_L3_2S solves a generalized Lyapunov  equation of the following forms
!>
!>    A * X * B^T + B * X * A^T = SCALE * Y                                              (1)
!>
!> or
!>
!>    A^T * X * B + B^T * X * A =  SCALE * Y                                             (2)
!>
!> where A is a M-by-M quasi upper triangular matrix, B is a M-by-M upper triangular,
!> and X and Y are symmetric  M-by-M matrices.
!> Typically the matrix pencil (A,B) is created by SGGES from LAPACK.
!>
Attention

The algorithm is implemented using BLAS level 3 operations with two stage blocking (DAG inner solves)

Parameters

TRANS

!>          TRANS is CHARACTER
!>          Specifies the form of the system of equations with respect to A and B:
!>          == 'N':  Equation (1) is solved.
!>          == 'T':  Equation (2) is solved.
!>

M

!>          M is INTEGER
!>          The order of the matrices A and B.  M >= 0.
!>

A

!>          A is REAL array, dimension (LDA,M)
!>          The matrix A must be (quasi-) upper triangular.
!>

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!>

B

!>          B is REAL array, dimension (LDB,M)
!>          The matrix B must be upper triangular.
!>

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!>

X

!>          X is REAL array, dimension (LDX,N)
!>          On input, the matrix X contains the right hand side Y.
!>          On output, the matrix X contains the solution of Equation (1) or (2)
!>          as selected by TRANSA, TRANSB, and SGN.
!>          Right hand side Y and the solution X are M-by-N matrices.
!>

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,M).
!>

SCALE

!>          SCALE is REAL
!>          SCALE is a scaling factor to prevent the overflow in the result.
!>          If INFO == 0 then SCALE is 1.0 otherwise if one of the inner systems
!>          could not be solved correctly, 0 < SCALE <= 1 holds true.
!>

WORK

!>          WORK is REAL array, dimension LWORK
!>          Workspace for the algorithm.
!>          The workspace needs to queried before the running the computation.
!>          The query is performed by calling the subroutine with INFO == -1 on input.
!>          The required workspace is then returned in INFO.
!>

INFO

!>          INFO is INTEGER
!>
!>          On input:
!>            == -1 : Perform a workspace query
!>            <> -1: normal operation
!>
!>          On exit, workspace query:
!>            < 0 :  if INFO = -i, the i-th argument had an illegal value
!>            >= 0:  The value of INFO is the required number of elements in the workspace.
!>
!>          On exit, normal operation:
!>            == 0:  successful exit
!>            < 0:  if INFO = -i, the i-th argument had an illegal value
!>            > 0:  The equation is not solved correctly. One of the arising inner
!>                  system got singular.
!>
Author

Martin Koehler, MPI Magdeburg

Date

January 2024

Definition at line 153 of file sla_tglyap_l3_2stage.f90.

recursive subroutine sla_tglyap_recursive (character, dimension(1) trans, integer m, real, dimension(lda, *) a, integer lda, real, dimension(ldb,*) b, integer ldb, real, dimension(ldx, *) x, integer ldx, real scale, real, dimension(*) work, integer info)

Recursive Blocking Algorithm for the generalized Lyapunov equation.

Purpose:

!>
!> SLA_TGLYAP_RECURSIVE solves a generalized Lyapunov  equation of the following forms
!>
!>    A * X * B^T + B * X * A^T = SCALE * Y                                              (1)
!>
!> or
!>
!>    A^T * X * B + B^T * X * A =  SCALE * Y                                             (2)
!>
!> where A is a M-by-M quasi upper triangular matrix, B is a M-by-M upper triangular,
!> and X and Y are symmetric  M-by-M matrices.
!> Typically the matrix pencil (A,B) is created by SGGES from LAPACK.
!>
Attention

The algorithm is implemented using recursive blocking.

Parameters

TRANS

!>          TRANS is CHARACTER(1)
!>          Specifies the form of the system of equations with respect to A and B:
!>          == 'N':  Equation (1) is solved.
!>          == 'T':  Equation (2) is solved.
!>

M

!>          M is INTEGER
!>          The order of the matrices A and B.  M >= 0.
!>

A

!>          A is REAL array, dimension (LDA,M)
!>          The matrix A must be (quasi-) upper triangular.
!>

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!>

B

!>          B is REAL array, dimension (LDB,M)
!>          The matrix B must be upper triangular.
!>

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!>

X

!>          X is REAL array, dimension (LDX,N)
!>          On input, the matrix X contains the right hand side Y.
!>          On output, the matrix X contains the solution of Equation (1) or (2)
!>          as selected by TRANSA, TRANSB, and SGN.
!>          Right hand side Y and the solution X are M-by-N matrices.
!>

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,M).
!>

SCALE

!>          SCALE is REAL
!>          SCALE is a scaling factor to prevent the overflow in the result.
!>          If INFO == 0 then SCALE is 1.0 otherwise if one of the inner systems
!>          could not be solved correctly, 0 < SCALE <= 1 holds true.
!>

WORK

!>          WORK is REAL array, dimension M*M
!>          Workspace for the algorithm.
!>

INFO

!>          INFO is INTEGER
!>          == 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  The equation is not solved correctly. One of the arising inner
!>                system got singular.
!>
Author

Martin Koehler, MPI Magdeburg

Date

January 2024

Definition at line 140 of file sla_tglyap_recursive.f90.

subroutine sla_tgstein_dag (character, dimension(1) trans, integer m, real, dimension(lda, *) a, integer lda, real, dimension(ldb,*) b, integer ldb, real, dimension(ldx, *) x, integer ldx, real scale, real, dimension(*) work, integer info)

Level-3 Bartels-Stewart Algorithm for the generalized Stein equation with DAG scheduling.

Purpose:

!>
!> SLA_TGSTEIN_DAG solves a generalized Lyapunov  equation of the following forms
!>
!>    A * X * A^T - B * X * B^T = SCALE * Y                                              (1)
!>
!> or
!>
!>    A^T * X * A - B^T * X * B =  SCALE * Y                                             (2)
!>
!> where A is a M-by-M quasi upper triangular matrix, B is a M-by-M upper triangular,
!> and X and Y are symmetric  M-by-M matrices.
!> Typically the matrix pencil (A,B) is created by SGGES from LAPACK.
!>
Attention

The algorithm is implemented using BLAS level 3 operations and DAG .

Parameters

TRANS

!>          TRANS is CHARACTER(1)
!>          Specifies the form of the system of equations with respect to A, B, and C:
!>          == 'N':  Equation (1) is solved.
!>          == 'T':  Equation (2) is solved.
!>

M

!>          M is INTEGER
!>          The order of the matrices A and C.  M >= 0.
!>

A

!>          A is REAL array, dimension (LDA,M)
!>          The matrix A must be (quasi-) upper triangular.
!>

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!>

B

!>          B is REAL array, dimension (LDB,M)
!>          The matrix B must be upper triangular.
!>

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!>

X

!>          X is REAL array, dimension (LDX,N)
!>          On input, the matrix X contains the right hand side Y.
!>          On output, the matrix X contains the solution of Equation (1) or (2)
!>          as selected by TRANSA, TRANSB, and SGN.
!>          Right hand side Y and the solution X are M-by-N matrices.
!>

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,M).
!>

SCALE

!>          SCALE is REAL
!>          SCALE is a scaling factor to prevent the overflow in the result.
!>          If INFO == 0 then SCALE is 1.0 otherwise if one of the inner systems
!>          could not be solved correctly, 0 < SCALE <= 1 holds true.
!>

WORK

!>          WORK is REAL array, dimension LWORK
!>          Workspace for the algorithm.
!>          The workspace needs to queried before the running the computation.
!>          The query is performed by calling the subroutine with INFO == -1 on input.
!>          The required workspace is then returned in INFO.
!>

INFO

!>          INFO is INTEGER
!>
!>          On input:
!>            == -1 : Perform a workspace query
!>            <> -1: normal operation
!>
!>          On exit, workspace query:
!>            < 0 :  if INFO = -i, the i-th argument had an illegal value
!>            >= 0:  The value of INFO is the required number of elements in the workspace.
!>
!>          On exit, normal operation:
!>            == 0:  successful exit
!>            < 0:  if INFO = -i, the i-th argument had an illegal value
!>            > 0:  The equation is not solved correctly. One of the arising inner
!>                  system got singular.
!>
Author

Martin Koehler, MPI Magdeburg

Date

January 2024

Definition at line 152 of file sla_tgstein_dag.f90.

subroutine sla_tgstein_l2 (character, dimension(1) trans, integer m, real, dimension(lda, *) a, integer lda, real, dimension(ldb, *) b, integer ldb, real, dimension(ldx, *) x, integer ldx, real scale, real, dimension(*) work, integer info)

Level-2 Bartels-Stewart Algorithm for the generalized Stein equation.

Purpose:

!>
!> SLA_TGSTEIN_L2 solves a generalized Lyapunov  equation of the following forms
!>
!>    A * X * A^T - B * X * B^T = SCALE * Y                                              (1)
!>
!> or
!>
!>    A^T * X * A - B^T * X * B =  SCALE * Y                                             (2)
!>
!> where A is a M-by-M quasi upper triangular matrix, B is a M-by-M upper triangular,
!> and X and Y are symmetric  M-by-M matrices.
!> Typically the matrix pencil (A,B) is created by SGGES from LAPACK.
!>
Attention

The algorithm is implemented using BLAS level 2 operations.

Parameters

TRANS

!>          TRANS is CHARACTER(1)
!>          Specifies the form of the system of equations with respect to A, B, and C:
!>          == 'N':  Equation (1) is solved.
!>          == 'T':  Equation (2) is solved.
!>

M

!>          M is INTEGER
!>          The order of the matrices A and C.  M >= 0.
!>

A

!>          A is REAL array, dimension (LDA,M)
!>          The matrix A must be (quasi-) upper triangular.
!>

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!>

B

!>          B is REAL array, dimension (LDB,M)
!>          The matrix B must be upper triangular.
!>

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!>

X

!>          X is REAL array, dimension (LDX,N)
!>          On input, the matrix X contains the right hand side Y.
!>          On output, the matrix X contains the solution of Equation (1) or (2)
!>          as selected by TRANSA, TRANSB, and SGN.
!>          Right hand side Y and the solution X are M-by-N matrices.
!>

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,M).
!>

SCALE

!>          SCALE is REAL
!>          SCALE is a scaling factor to prevent the overflow in the result.
!>          If INFO == 0 then SCALE is 1.0 otherwise if one of the inner systems
!>          could not be solved correctly, 0 < SCALE <= 1 holds true.
!>

WORK

!>          WORK is REAL array, dimension LWORK
!>          Workspace for the algorithm.
!>          The workspace needs to queried before the running the computation.
!>          The query is performed by calling the subroutine with INFO == -1 on input.
!>          The required workspace is then returned in INFO.
!>

INFO

!>          INFO is INTEGER
!>
!>          On input:
!>            == -1 : Perform a workspace query
!>            <> -1: normal operation
!>
!>          On exit, workspace query:
!>            < 0 :  if INFO = -i, the i-th argument had an illegal value
!>            >= 0:  The value of INFO is the required number of elements in the workspace.
!>
!>          On exit, normal operation:
!>            == 0:  successful exit
!>            < 0:  if INFO = -i, the i-th argument had an illegal value
!>            > 0:  The equation is not solved correctly. One of the arising inner
!>                  system got singular.
!>
Author

Martin Koehler, MPI Magdeburg

Date

January 2024

Definition at line 154 of file sla_tgstein_l2.f90.

subroutine sla_tgstein_l3 (character, dimension(1) trans, integer m, real, dimension(lda, *) a, integer lda, real, dimension(ldb, *) b, integer ldb, real, dimension(ldx, *) x, integer ldx, real scale, real, dimension(*) work, integer info)

Level-3 Bartels-Stewart Algorithm for the generalized Stein equation.

Purpose:

!>
!> SLA_TGSTEIN_L3 solves a generalized Lyapunov  equation of the following forms
!>
!>    A * X * A^T - B * X * B^T = SCALE * Y                                              (1)
!>
!> or
!>
!>    A^T * X * A - B^T * X * B =  SCALE * Y                                             (2)
!>
!> where A is a M-by-M quasi upper triangular matrix, B is a M-by-M upper triangular,
!> and X and Y are symmetric  M-by-M matrices.
!> Typically the matrix pencil (A,B) is created by SGGES from LAPACK.
!>
Attention

The algorithm is implemented using BLAS level 3 operations.

Parameters

TRANS

!>          TRANS is CHARACTER(1)
!>          Specifies the form of the system of equations with respect to A, B,  and C:
!>          == 'N':  Equation (1) is solved.
!>          == 'T':  Equation (2) is solved.
!>

M

!>          M is INTEGER
!>          The order of the matrices A and C.  M >= 0.
!>

A

!>          A is REAL array, dimension (LDA,M)
!>          The matrix A must be (quasi-) upper triangular.
!>

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!>

B

!>          B is REAL array, dimension (LDB,M)
!>          The matrix B must be upper triangular.
!>

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!>

X

!>          X is REAL array, dimension (LDX,N)
!>          On input, the matrix X contains the right hand side Y.
!>          On output, the matrix X contains the solution of Equation (1) or (2)
!>          as selected by TRANSA, TRANSB, and SGN.
!>          Right hand side Y and the solution X are M-by-N matrices.
!>

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,M).
!>

SCALE

!>          SCALE is REAL
!>          SCALE is a scaling factor to prevent the overflow in the result.
!>          If INFO == 0 then SCALE is 1.0 otherwise if one of the inner systems
!>          could not be solved correctly, 0 < SCALE <= 1 holds true.
!>

WORK

!>          WORK is REAL array, dimension LWORK
!>          Workspace for the algorithm.
!>          The workspace needs to queried before the running the computation.
!>          The query is performed by calling the subroutine with INFO == -1 on input.
!>          The required workspace is then returned in INFO.
!>

INFO

!>          INFO is INTEGER
!>
!>          On input:
!>            == -1 : Perform a workspace query
!>            <> -1: normal operation
!>
!>          On exit, workspace query:
!>            < 0 :  if INFO = -i, the i-th argument had an illegal value
!>            >= 0:  The value of INFO is the required number of elements in the workspace.
!>
!>          On exit, normal operation:
!>            == 0:  successful exit
!>            < 0:  if INFO = -i, the i-th argument had an illegal value
!>            > 0:  The equation is not solved correctly. One of the arising inner
!>                  system got singular.
!>
Author

Martin Koehler, MPI Magdeburg

Date

January 2024

Definition at line 153 of file sla_tgstein_l3.f90.

subroutine sla_tgstein_l3_2s (character, dimension(1) trans, integer m, real, dimension(lda, *) a, integer lda, real, dimension(ldb, *) b, integer ldb, real, dimension(ldx, *) x, integer ldx, real scale, real, dimension(*) work, integer info)

Level-3 Bartels-Stewart Algorithm for the generalized Stein equation (Two Stage)

Purpose:

!>
!> SLA_TGSTEIN_L3_2S solves a generalized Lyapunov  equation of the following forms
!>
!>    A * X * A^T - B * X * B^T = SCALE * Y                                              (1)
!>
!> or
!>
!>    A^T * X * A - B^T * X * B =  SCALE * Y                                             (2)
!>
!> where A is a M-by-M quasi upper triangular matrix, B is a M-by-M upper triangular,
!> and X and Y are symmetric  M-by-M matrices.
!> Typically the matrix pencil (A,B) is created by SGGES from LAPACK.
!>
Attention

The algorithm is implemented using BLAS level 3 operations with two level blocking.

Parameters

TRANS

!>          TRANS is CHARACTER(1)
!>          Specifies the form of the system of equations with respect to A, B,  and C:
!>          == 'N':  Equation (1) is solved.
!>          == 'T':  Equation (2) is solved.
!>

M

!>          M is INTEGER
!>          The order of the matrices A and C.  M >= 0.
!>

A

!>          A is REAL array, dimension (LDA,M)
!>          The matrix A must be (quasi-) upper triangular.
!>

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!>

B

!>          B is REAL array, dimension (LDB,M)
!>          The matrix B must be upper triangular.
!>

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!>

X

!>          X is REAL array, dimension (LDX,N)
!>          On input, the matrix X contains the right hand side Y.
!>          On output, the matrix X contains the solution of Equation (1) or (2)
!>          as selected by TRANSA, TRANSB, and SGN.
!>          Right hand side Y and the solution X are M-by-N matrices.
!>

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,M).
!>

SCALE

!>          SCALE is REAL
!>          SCALE is a scaling factor to prevent the overflow in the result.
!>          If INFO == 0 then SCALE is 1.0 otherwise if one of the inner systems
!>          could not be solved correctly, 0 < SCALE <= 1 holds true.
!>

WORK

!>          WORK is REAL array, dimension LWORK
!>          Workspace for the algorithm.
!>          The workspace needs to queried before the running the computation.
!>          The query is performed by calling the subroutine with INFO == -1 on input.
!>          The required workspace is then returned in INFO.
!>

INFO

!>          INFO is INTEGER
!>
!>          On input:
!>            == -1 : Perform a workspace query
!>            <> -1: normal operation
!>
!>          On exit, workspace query:
!>            < 0 :  if INFO = -i, the i-th argument had an illegal value
!>            >= 0:  The value of INFO is the required number of elements in the workspace.
!>
!>          On exit, normal operation:
!>            == 0:  successful exit
!>            < 0:  if INFO = -i, the i-th argument had an illegal value
!>            > 0:  The equation is not solved correctly. One of the arising inner
!>                  system got singular.
!>
Author

Martin Koehler, MPI Magdeburg

Date

January 2024

Definition at line 153 of file sla_tgstein_l3_2stage.f90.

recursive subroutine sla_tgstein_recursive (character, dimension(1) trans, integer m, real, dimension(lda, *) a, integer lda, real, dimension(ldb, *) b, integer ldb, real, dimension(ldx, *) x, integer ldx, real scale, real, dimension(*) work, integer info)

Recursive Blocking Algorithm for the generalized Stein equation.

Purpose:

!>
!> SLA_TGSTEIN_RECURSIVE solves a generalized Lyapunov  equation of the following forms
!>
!>    A * X * A^T - B * X * B^T = SCALE * Y                                              (1)
!>
!> or
!>
!>    A^T * X * A - B^T * X * B =  SCALE * Y                                             (2)
!>
!> where A is a M-by-M quasi upper triangular matrix, B is a M-by-M upper triangular,
!> and X and Y are symmetric  M-by-M matrices.
!> Typically the matrix pencil (A,B) is created by SGGES from LAPACK.
!>
Attention

The algorithm is implemented using recursive blocking.

Parameters

TRANS

!>          TRANS is CHARACTER(1)
!>          Specifies the form of the system of equations with respect to A, B, and C:
!>          == 'N':  Equation (1) is solved.
!>          == 'T':  Equation (2) is solved.
!>

M

!>          M is INTEGER
!>          The order of the matrices A and C.  M >= 0.
!>

A

!>          A is REAL array, dimension (LDA,M)
!>          The matrix A must be (quasi-) upper triangular.
!>

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!>

B

!>          B is REAL array, dimension (LDB,M)
!>          The matrix B must be upper triangular.
!>

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!>

X

!>          X is REAL array, dimension (LDX,N)
!>          On input, the matrix X contains the right hand side Y.
!>          On output, the matrix X contains the solution of Equation (1) or (2)
!>          as selected by TRANSA, TRANSB, and SGN.
!>          Right hand side Y and the solution X are M-by-N matrices.
!>

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,M).
!>

SCALE

!>          SCALE is REAL
!>          SCALE is a scaling factor to prevent the overflow in the result.
!>          If INFO == 0 then SCALE is 1.0 otherwise if one of the inner systems
!>          could not be solved correctly, 0 < SCALE <= 1 holds true.
!>

WORK

!>          WORK is REAL array, dimension M*M
!>          Workspace for the algorithm.
!>

INFO

!>          INFO is INTEGER
!>          == 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  The equation is not solved correctly. One of the arising inner
!>                system got singular.
!>
Author

Martin Koehler, MPI Magdeburg

Date

January 2024

Definition at line 140 of file sla_tgstein_recursive.f90.

Author

Generated automatically by Doxygen for MEPACK from the source code.

Info

Fri Oct 25 2024 00:00:00 Version 1.1.1 MEPACK