sglaux - Man Page
Name
sglaux — Single Precision Auxiliary Routines
— Helper routines for single precision computations.
Synopsis
Functions
subroutine sla_itranspose (k, kh, l, lh, x, ldx)
Solver for 4-by-4 Linear Systems.
subroutine sla_qtrmm2 (side, trans, m, n, alpha, a, lda, b, ldb, c, ldc)
Multiply with the sub-diagonal entries of a quasi triangular matrix.
subroutine sla_small_solve4 (n, a, rhs, info, eps, smlnum)
Solver for 4-by-4 Linear Systems.
subroutine sla_small_solve8 (n, a, rhs, info, eps, smlnum)
Solver for 8-by-8 Linear Systems.
subroutine sla_sort_ev (n, a, lda, q, ldq, nb, work, info)
Block Reordering of generalized Eigenvalues.
subroutine sla_sort_gev (n, a, lda, b, ldb, q, ldq, z, ldz, nb, work, lwork, info)
Block Reordering of generalized Eigenvalues.
subroutine sla_transform_general (trans, m, n, x, ldx, qa, ldqa, qb, ldqb, work)
Transform the Right-Hand Side or Solution for generalized projections.
subroutine sla_transform_standard (trans, m, x, ldx, q, ldq, work)
Transform the Right-Hand Side or Solution for standard projections.
Detailed Description
Helper routines for single precision computations.
This section contains a set of helper routines for the single precision computational routines. This includes the transformation of the right-hand-sides, the transformation of the solutions, the solution of special linear systems and the sorting of eigenvalues.
Function Documentation
subroutine sla_itranspose (integer k, integer kh, integer l, integer lh, real, dimension(ldx,*) x, integer ldx)
Solver for 4-by-4 Linear Systems.
Purpose:
!> !> SLA_ITRANSPOSE performs the implicit transpose !> !> X(L:LH,K:KH ) <- X(K:KH,L:LH)**T (1) !> !>
- Parameters
K
!> K is INTEGER !> First index of the transpose operations as in (1) !>
KH
!> KH is INTEGER !> Second index of the transpose operations as in (1) !>
L
!> L is INTEGER !> Third index of the transpose operations as in (1) !>
LH
!> LH is INTEGER !> Fourth index of the transpose operations as in (1) !>
X
!> X is REAL array, dimension (LDX,*) !> X is the matrix to perform the transpose on. !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= MAX(1,KH,LH). !>
- Author
Martin Koehler, MPI Magdeburg
- Date
January 2024
Definition at line 86 of file sla_itranspose.f90.
subroutine sla_qtrmm2 (character(1) side, character(1) trans, integer m, integer n, real alpha, real, dimension(lda, *) a, integer lda, real, dimension(ldb, *) b, integer ldb, real, dimension(ldc,*) c, integer ldc)
Multiply with the sub-diagonal entries of a quasi triangular matrix.
Purpose:
!> !> Multiply a matrix with the sub-diagonal entries of a quasi-triangular matrix. !> Consider a quasi-triangular matrix A where sub(A) is the matrix only containing !> the sub-diagonal entries. Than the SLA_QTRMM2 routine computes !> !> C = C + ALPHA * op(sub(A)) * B (1) !> !> or !> !> C = C + ALPHA * B * op(sub(A)) (2) !> !>
- Attention
The routine does not check the input arguments.
- Parameters
SIDE
!> SIDE is CHARACTER(1) !> On entry, SIDE specifies whether op( A ) multiplies B from !> the left or right as follows: !> !> SIDE = 'L' or 'l' B := alpha*op( A )*B. !> !> SIDE = 'R' or 'r' B := alpha*B*op( A ). !>
TRANS
!> TRANS is CHARACTER(1) !> On entry, TRANS specifies the form of op( A ) to be used in !> the matrix multiplication as follows: !> !> TRANS == 'N' or 'n' op( A ) = A. !> !> TRANS == 'T' or 't' op( A ) = A**T. !> !> TRANS = 'C' or 'c' op( A ) = A**T. !>
M
!> M is INTEGER !> On entry, M specifies the number of rows of B. M must be at !> least zero. !>
N
!> N is INTEGER !> On entry, N specifies the number of columns of B. N must be !> at least zero. !>
ALPHA
!> ALPHA is REAL. !> On entry, ALPHA specifies the scalar alpha. When alpha is !> zero then A is not referenced and B need not be set before !> entry. !>
A
!> A is REAL array of DIMENSION ( LDA, k ), where k is m !> when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. !> The leading k by k !> upper triangular part of the array A must contain the upper !> quasi triangular matrix. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. When SIDE = 'L' or 'l' then !> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' !> then LDA must be at least max( 1, n ). !>
B
!> B is REAL array of DIMENSION ( LDB, n ). !> Before entry, the leading m by n part of the array B must !> contain the matrix B. !>
LDB
!> LDB is INTEGER !> On entry, LDB specifies the first dimension of B as declared !> in the calling (sub) program. LDB must be at least !> max( 1, m ). !>
C
!> C is REAL array of DIMENSION ( LDC, n ). !> Before entry, the leading m by n part of the array C must !> contain the matrix C, and on exit is overwritten by the !> update January 2021 !>
LDC
!> LDC is INTEGER !> On entry, LDC specifies the first dimension of C as declared !> in the calling (sub) program. LDB must be at least !> max( 1, m ). !>
- Author
Martin Koehler, MPI Magdeburg
- Date
January 2024
Definition at line 153 of file sla_qtrmm2.f90.
subroutine sla_small_solve4 (integer n, real, dimension( 4, 4 ) a, real, dimension(4) rhs, integer info, real eps, real smlnum)
Solver for 4-by-4 Linear Systems.
Purpose:
!> !> SLA_SMALL_SOLVE4 solves a linear system !> !> A * x = b (1) !> !> where A is a most a 4 by 4 matrix. !>
- Parameters
N
!> N is INTEGER !> The order of the matrix A N = (1,2,4). !>
A
!> A is REAL array, dimension (4,4) !> The matrix A must be stored in a 4-by-4 matrix even if it is smaller. !> On output the matrix A is destroyed. !>
RHS
!> RHS is REAL array, dimension (4) !> The matrix RHS contains the right hand side on input and the solution X on output if INFO == 0 !>
INFO
!> INFO is INTEGER !> == 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: The equation is not solved correctly. One of the arising inner !> system got singular. !>
EPS
!> EPS is REAL !> EPS is the machine epsilon determined by DLAMCH !>
SMLNUM
!> SMLNUM is REAL !> SMLNUM is the smallest number in REAL which can be represented without underflow. !>
- Author
Martin Koehler, MPI Magdeburg
- Date
January 2024
Definition at line 98 of file sla_small_solve4.f90.
subroutine sla_small_solve8 (integer n, real, dimension( 8, 8 ) a, real, dimension(8) rhs, integer info, real eps, real smlnum)
Solver for 8-by-8 Linear Systems.
Purpose:
!> !> SLA_SMALL_SOLVE8 solves a linear system !> !> A * x = b (1) !> !> where A is a most a 8 by 8 matrix with leading dimension 8. !>
- Parameters
N
!> N is INTEGER !> The order of the matrix A N = {1,2,4,8} . !>
A
!> A is REAL array, dimension (8,8) !> The matrix A must be stored in a 4-by-4 matrix even if it is smaller. !> On output the matrix A is destroyed. !>
RHS
!> RHS is REAL array, dimension (8) !> The matrix RHS contains the right hand side on input and the solution X on output if INFO == 0 !>
INFO
!> INFO is INTEGER !> == 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: The equation is not solved correctly. One of the arising inner !> system got singular. !>
EPS
!> EPS is REAL !> EPS is the machine epsilon determined by DLAMCH !>
SMLNUM
!> SMLNUM is REAL !> SMLNUM is the smallest number in REAL which can be represented without underflow. !>
- Author
Martin Koehler, MPI Magdeburg
- Date
January 2024
Definition at line 98 of file sla_small_solve8.f90.
subroutine sla_sort_ev (integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldq, * ) q, integer ldq, integer nb, real, dimension( * ) work, integer info)
Block Reordering of generalized Eigenvalues.
Purpose:
!> !> Reorder the eigenvalues of a matrix A such that !> the complex eigenvalues pairs will not cause a change of the block !> size in blocked linear matrix equation solver codes. !> !> The function uses STREXC from LAPACK for moving the eigenvalues !> on the diagonal. !> !>
- Parameters
N
!> N is INTEGER !> The order of the matrices A and Q, N >= 0. !>
A
!> A is a REAL array, dimension (LDA,N) !> On entry, the leading N-by-N upper !> Hessenberg part of this array must contain the !> generalized Schur factor A_s of the matrix A. !> On exit, the leading N-by-N part of this array contains !> the generalized Schur factor A_s of the matrix A with !> no complex eigenvalues pairs an A(k*NB,k*NB), where k is !> a non negative integer. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= MAX(1,N). !>
Q
!> Q is a REAL array, dimension (LDQ,N) !> On entry, the leading N-by-N part of !> this array must contain the orthogonal matrix Q from !> the generalized Schur factorization. !> On exit, the leading N-by-N part of this array contains !> the update January 2021 !> factorization with integrated eigenvalue reordering. !>
LDQ
!> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= MAX(1,N). !>
NB
!> NB is INTEGER !> Block size of the solver planed to use. Typical values !> are 16, 32, or 64. The block size must be an even positive !> integer otherwise an error is returned. !>
WORK
!> WORK is INTEGER array, dimension (N) !> Workspace !>
INFO
!> INFO is INTEGER !> == 0: successful exit; !> < 0: if INFO = -i, the i-th argument had an illegal !> value; !> = 1: The internal STGEX2 caused an error. ] !>
- Author
Martin Koehler, MPI Magdeburg
- Date
January 2024
Definition at line 124 of file sla_sort_ev.f90.
subroutine sla_sort_gev (integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldq, * ) q, integer ldq, real, dimension( ldz, * ) z, integer ldz, integer nb, real, dimension( * ) work, integer lwork, integer info)
Block Reordering of generalized Eigenvalues.
Purpose:
!> !> Reorder the eigenvalues of a matrix pencil (A,B) such that !> the complex eigenvalues pairs will not cause a change of the block !> size in blocked linear matrix equation solver codes. !> !> The function uses STGEX2 from LAPACK for moving the eigenvalues !> on the diagonal. !> !>
- Parameters
N
!> N is INTEGER !> The order of the matrices A, B, Q, and Z, N >= 0. !>
A
!> A is a REAL array, dimension (LDA,N) !> On entry, the leading N-by-N upper !> Hessenberg part of this array must contain the !> generalized Schur factor A_s of the matrix A. !> On exit, the leading N-by-N part of this array contains !> the generalized Schur factor A_s of the matrix A with !> no complex eigenvalues pairs an A(k*NB,k*NB), where k is !> a non negative integer. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= MAX(1,N). !>
B
!> B is a REAL array, dimension (LDB,N) !> On entry, the leading N-by-N upper !> triangular part of this array must contain the !> generalized Schur factor B_s of the matrix B, !> On exit, the leading N-by-N part of this array contains !> the generalized Schur factor B_s of the matrix B !> with reordered eigenvalues. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= MAX(1,N). !>
Q
!> Q is a REAL array, dimension (LDQ,N) !> On entry, the leading N-by-N part of !> this array must contain the orthogonal matrix Q from !> the generalized Schur factorization. !> On exit, the leading N-by-N part of this array contains !> the update January 2021 !> factorization with integrated eigenvalue reordering. !>
LDQ
!> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= MAX(1,N). !>
Z
!> Z is a REAL array, dimension (LDZ,N) !> On entry, the leading N-by-N part of !> this array must contain the orthogonal matrix Z from !> the generalized Schur factorization. !> On exit, the leading N-by-N part of this array contains !> the update January 2021 !> factorization with integrated eigenvalue reordering. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= MAX(1,N). !>
NB
!> NB is INTEGER !> Block size of the solver planed to use. Typical values !> are 16, 32, or 64. The block size must be an even positive !> integer otherwise an error is returned. !>
WORK
!> WORK is INTEGER array, dimension (LWORK) !> Workspace !>
LWORK
!> LWORK is INTEGER !> Size of the workspace. !> LWORK >= MAX(1, 4*N, 256) !>
INFO
!> INFO is INTEGER !> == 0: successful exit; !> < 0: if INFO = -i, the i-th argument had an illegal !> value; !> = 1: The internal STGEX2 caused an error. ] !>
- Author
Martin Koehler, MPI Magdeburg
- Date
January 2024
Definition at line 165 of file sla_sort_gev.f90.
subroutine sla_transform_general (character, dimension(*) trans, integer m, integer n, real, dimension(ldx, *) x, integer ldx, real, dimension(ldqa, *) qa, integer ldqa, real, dimension(ldqb, *) qb, integer ldqb, real, dimension(*) work)
Transform the Right-Hand Side or Solution for generalized projections.
Purpose:
!> SLA_TRANSFORM_STANDARD computes either !> !> X <- QA*X*QB**T (1) !> !> or !> !> X <- QA**T*X*QB (2) !> !> where QA is a M-by-M matrices, QB is a N-by-N matrix, and X is a M-by-N matrix. !>
- Remarks
The function does not perform any check on the input arguments.
- Parameters
TRANS
!> TRANS is CHARACTER(1) !> Specifies which transformation is applied: !> == 'N': Transformation (1) !> == 'T': Transformation (2) !>
M
!> M is INTEGER !> The order of the matrices QA and the number of rows of X. M >= 0. !>
N
!> N is INTEGER !> The order of the matrices QB and the number of columns of X. N >= 0. !>
X
!> X is REAL array, dimension (LDX,N) !> The matrix X is a general M-by-N matrix overwritten by (1) or (2) !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,M). !>
QA
!> QA is REAL array, dimension (LDQA,M) !> The matrix QA is M-by-M the transformation matrix. !>
LDQA
!> LDQA is INTEGER !> The leading dimension of the array QA. LDQA >= max(1,M). !>
QB
!> QB is REAL array, dimension (LDQB,N) !> The matrix QB is N-by-N the transformation matrix. !>
LDQB
!> LDQB is INTEGER !> The leading dimension of the array QB. LDQB >= max(1,N). !>
WORK
!> WORK is REAL array, dimension (M*N) !> Workspace for the computation. !>
- Author
Martin Koehler, MPI Magdeburg
- Date
January 2024
Definition at line 119 of file sla_transform_general.f90.
subroutine sla_transform_standard (character, dimension(*) trans, integer m, real, dimension(ldx, *) x, integer ldx, real, dimension(ldq, *) q, integer ldq, real, dimension(*) work)
Transform the Right-Hand Side or Solution for standard projections.
Purpose:
!> SLA_TRANSFORM_STANDARD computes either !> !> X <- Q*X*Q**T (1) !> !> or !> !> X <- Q**T*X*Q (2) !> !> where Q and X are M-by-M matrices. !>
- Remarks
The function does not perform any check on the input arguments.
- Parameters
TRANS
!> TRANS is CHARACTER(1) !> Specifies which transformation is applied: !> == 'N': Transformation (1) !> == 'T': Transformation (2) !>
M
!> M is INTEGER !> The order of the matrices Q and X. M >= 0. !>
X
!> X is REAL array, dimension (LDX,M) !> The matrix X is a general M-by-M matrix overwritten by (1) or (2) !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,M). !>
Q
!> Q is REAL array, dimension (LDQ,M) !> The matrix Q is M-by-M the transformation matrix. !>
LDQ
!> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,M). !>
WORK
!> WORK is REAL array, dimension (M**2) !> Workspace for the computation. !>
- Author
Martin Koehler, MPI Magdeburg
- Date
January 2024
Definition at line 101 of file sla_transform_standard.f90.
Author
Generated automatically by Doxygen for MEPACK from the source code.