sc_ShellRotation - Man Page

Compute the transformation matrices that maps a set of Cartesian functions to another set of Cartesian functions in a rotated coordinate system.

Synopsis

#include <shellrot.h>

Public Member Functions

void init (int a, SymmetryOperation &, const Ref< Integral > &)
Initialize the ShellRotation for Cartesian functions, given the angular momentum, a symmetry operation, and an Integral object.
void init_pure (int a, SymmetryOperation &, const Ref< Integral > &)
Initialize the ShellRotation for solid harmonic functions, given the angular momentum, a symmetry operation, and an Integral object.
ShellRotation (int n)
Initialize this ShellRotation to hold a n by n transformation.
ShellRotation (const ShellRotation &)
Initialize this from another ShellRotation.
ShellRotation (int a, SymmetryOperation &, const Ref< Integral > &, int pure=0)
Initialize using init(...) or, if pure is nonzero, init_pure(...).
ShellRotation & operator= (const ShellRotation &)
Assign this to another shell rotation.
int am () const
Return the angular momentum.
int dim () const
Return the number of functions in a shell.
double & operator() (int i, int j)
Return an element of the transform matrix.
double * operator[] (int i)
Return a row of the transform matrix.
ShellRotation operate (const ShellRotation &rot) const
Returns the result of rot*this.
ShellRotation transform (const ShellRotation &rot) const
Returns the result of rot*this*transpose(rot).
double trace () const
Return the trace of the transformation.
void print () const
Print the object to ExEnv::out0().

Detailed Description

Compute the transformation matrices that maps a set of Cartesian functions to another set of Cartesian functions in a rotated coordinate system.

Author

Generated automatically by Doxygen for MPQC from the source code.

Info

Version 2.3.1 MPQC