ptts2 - Man Page

ptts2: triangular solve using factor, unblocked

Synopsis

Functions

subroutine cptts2 (iuplo, n, nrhs, d, e, b, ldb)
CPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
subroutine dptts2 (n, nrhs, d, e, b, ldb)
DPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
subroutine sptts2 (n, nrhs, d, e, b, ldb)
SPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
subroutine zptts2 (iuplo, n, nrhs, d, e, b, ldb)
ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.

Detailed Description

Function Documentation

subroutine cptts2 (integer iuplo, integer n, integer nrhs, real, dimension( * ) d, complex, dimension( * ) e, complex, dimension( ldb, * ) b, integer ldb)

CPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.  

Purpose:

 CPTTS2 solves a tridiagonal system of the form
    A * X = B
 using the factorization A = U**H*D*U or A = L*D*L**H computed by CPTTRF.
 D is a diagonal matrix specified in the vector D, U (or L) is a unit
 bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
 the vector E, and X and B are N by NRHS matrices.
Parameters

IUPLO

          IUPLO is INTEGER
          Specifies the form of the factorization and whether the
          vector E is the superdiagonal of the upper bidiagonal factor
          U or the subdiagonal of the lower bidiagonal factor L.
          = 1:  A = U**H *D*U, E is the superdiagonal of U
          = 0:  A = L*D*L**H, E is the subdiagonal of L

N

          N is INTEGER
          The order of the tridiagonal matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

D

          D is REAL array, dimension (N)
          The n diagonal elements of the diagonal matrix D from the
          factorization A = U**H *D*U or A = L*D*L**H.

E

          E is COMPLEX array, dimension (N-1)
          If IUPLO = 1, the (n-1) superdiagonal elements of the unit
          bidiagonal factor U from the factorization A = U**H*D*U.
          If IUPLO = 0, the (n-1) subdiagonal elements of the unit
          bidiagonal factor L from the factorization A = L*D*L**H.

B

          B is COMPLEX array, dimension (LDB,NRHS)
          On entry, the right hand side vectors B for the system of
          linear equations.
          On exit, the solution vectors, X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 112 of file cptts2.f.

subroutine dptts2 (integer n, integer nrhs, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( ldb, * ) b, integer ldb)

DPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.  

Purpose:

 DPTTS2 solves a tridiagonal system of the form
    A * X = B
 using the L*D*L**T factorization of A computed by DPTTRF.  D is a
 diagonal matrix specified in the vector D, L is a unit bidiagonal
 matrix whose subdiagonal is specified in the vector E, and X and B
 are N by NRHS matrices.
Parameters

N

          N is INTEGER
          The order of the tridiagonal matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

D

          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the diagonal matrix D from the
          L*D*L**T factorization of A.

E

          E is DOUBLE PRECISION array, dimension (N-1)
          The (n-1) subdiagonal elements of the unit bidiagonal factor
          L from the L*D*L**T factorization of A.  E can also be regarded
          as the superdiagonal of the unit bidiagonal factor U from the
          factorization A = U**T*D*U.

B

          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the right hand side vectors B for the system of
          linear equations.
          On exit, the solution vectors, X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 101 of file dptts2.f.

subroutine sptts2 (integer n, integer nrhs, real, dimension( * ) d, real, dimension( * ) e, real, dimension( ldb, * ) b, integer ldb)

SPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.  

Purpose:

 SPTTS2 solves a tridiagonal system of the form
    A * X = B
 using the L*D*L**T factorization of A computed by SPTTRF.  D is a
 diagonal matrix specified in the vector D, L is a unit bidiagonal
 matrix whose subdiagonal is specified in the vector E, and X and B
 are N by NRHS matrices.
Parameters

N

          N is INTEGER
          The order of the tridiagonal matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

D

          D is REAL array, dimension (N)
          The n diagonal elements of the diagonal matrix D from the
          L*D*L**T factorization of A.

E

          E is REAL array, dimension (N-1)
          The (n-1) subdiagonal elements of the unit bidiagonal factor
          L from the L*D*L**T factorization of A.  E can also be regarded
          as the superdiagonal of the unit bidiagonal factor U from the
          factorization A = U**T*D*U.

B

          B is REAL array, dimension (LDB,NRHS)
          On entry, the right hand side vectors B for the system of
          linear equations.
          On exit, the solution vectors, X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 101 of file sptts2.f.

subroutine zptts2 (integer iuplo, integer n, integer nrhs, double precision, dimension( * ) d, complex*16, dimension( * ) e, complex*16, dimension( ldb, * ) b, integer ldb)

ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.  

Purpose:

 ZPTTS2 solves a tridiagonal system of the form
    A * X = B
 using the factorization A = U**H *D*U or A = L*D*L**H computed by ZPTTRF.
 D is a diagonal matrix specified in the vector D, U (or L) is a unit
 bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
 the vector E, and X and B are N by NRHS matrices.
Parameters

IUPLO

          IUPLO is INTEGER
          Specifies the form of the factorization and whether the
          vector E is the superdiagonal of the upper bidiagonal factor
          U or the subdiagonal of the lower bidiagonal factor L.
          = 1:  A = U**H *D*U, E is the superdiagonal of U
          = 0:  A = L*D*L**H, E is the subdiagonal of L

N

          N is INTEGER
          The order of the tridiagonal matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

D

          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the diagonal matrix D from the
          factorization A = U**H *D*U or A = L*D*L**H.

E

          E is COMPLEX*16 array, dimension (N-1)
          If IUPLO = 1, the (n-1) superdiagonal elements of the unit
          bidiagonal factor U from the factorization A = U**H*D*U.
          If IUPLO = 0, the (n-1) subdiagonal elements of the unit
          bidiagonal factor L from the factorization A = L*D*L**H.

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the right hand side vectors B for the system of
          linear equations.
          On exit, the solution vectors, X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 112 of file zptts2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK