ptrfs - Man Page

ptrfs: iterative refinement

Synopsis

Functions

subroutine cptrfs (uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CPTRFS
subroutine dptrfs (n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info)
DPTRFS
subroutine sptrfs (n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info)
SPTRFS
subroutine zptrfs (uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZPTRFS

Detailed Description

Function Documentation

subroutine cptrfs (character uplo, integer n, integer nrhs, real, dimension( * ) d, complex, dimension( * ) e, real, dimension( * ) df, complex, dimension( * ) ef, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)

CPTRFS  

Purpose:

 CPTRFS improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive definite
 and tridiagonal, and provides error bounds and backward error
 estimates for the solution.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the superdiagonal or the subdiagonal of the
          tridiagonal matrix A is stored and the form of the
          factorization:
          = 'U':  E is the superdiagonal of A, and A = U**H*D*U;
          = 'L':  E is the subdiagonal of A, and A = L*D*L**H.
          (The two forms are equivalent if A is real.)

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

D

          D is REAL array, dimension (N)
          The n real diagonal elements of the tridiagonal matrix A.

E

          E is COMPLEX array, dimension (N-1)
          The (n-1) off-diagonal elements of the tridiagonal matrix A
          (see UPLO).

DF

          DF is REAL array, dimension (N)
          The n diagonal elements of the diagonal matrix D from
          the factorization computed by CPTTRF.

EF

          EF is COMPLEX array, dimension (N-1)
          The (n-1) off-diagonal elements of the unit bidiagonal
          factor U or L from the factorization computed by CPTTRF
          (see UPLO).

B

          B is COMPLEX array, dimension (LDB,NRHS)
          The right hand side matrix B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is COMPLEX array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by CPTTRS.
          On exit, the improved solution matrix X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

FERR

          FERR is REAL array, dimension (NRHS)
          The forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).

BERR

          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is COMPLEX array, dimension (N)

RWORK

          RWORK is REAL array, dimension (N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Internal Parameters:

  ITMAX is the maximum number of steps of iterative refinement.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 181 of file cptrfs.f.

subroutine dptrfs (integer n, integer nrhs, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( * ) df, double precision, dimension( * ) ef, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) work, integer info)

DPTRFS  

Purpose:

 DPTRFS improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive definite
 and tridiagonal, and provides error bounds and backward error
 estimates for the solution.
Parameters

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

D

          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the tridiagonal matrix A.

E

          E is DOUBLE PRECISION array, dimension (N-1)
          The (n-1) subdiagonal elements of the tridiagonal matrix A.

DF

          DF is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the diagonal matrix D from the
          factorization computed by DPTTRF.

EF

          EF is DOUBLE PRECISION array, dimension (N-1)
          The (n-1) subdiagonal elements of the unit bidiagonal factor
          L from the factorization computed by DPTTRF.

B

          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          The right hand side matrix B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by DPTTRS.
          On exit, the improved solution matrix X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

FERR

          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).

BERR

          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is DOUBLE PRECISION array, dimension (2*N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Internal Parameters:

  ITMAX is the maximum number of steps of iterative refinement.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 161 of file dptrfs.f.

subroutine sptrfs (integer n, integer nrhs, real, dimension( * ) d, real, dimension( * ) e, real, dimension( * ) df, real, dimension( * ) ef, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer info)

SPTRFS  

Purpose:

 SPTRFS improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive definite
 and tridiagonal, and provides error bounds and backward error
 estimates for the solution.
Parameters

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

D

          D is REAL array, dimension (N)
          The n diagonal elements of the tridiagonal matrix A.

E

          E is REAL array, dimension (N-1)
          The (n-1) subdiagonal elements of the tridiagonal matrix A.

DF

          DF is REAL array, dimension (N)
          The n diagonal elements of the diagonal matrix D from the
          factorization computed by SPTTRF.

EF

          EF is REAL array, dimension (N-1)
          The (n-1) subdiagonal elements of the unit bidiagonal factor
          L from the factorization computed by SPTTRF.

B

          B is REAL array, dimension (LDB,NRHS)
          The right hand side matrix B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is REAL array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by SPTTRS.
          On exit, the improved solution matrix X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

FERR

          FERR is REAL array, dimension (NRHS)
          The forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).

BERR

          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is REAL array, dimension (2*N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Internal Parameters:

  ITMAX is the maximum number of steps of iterative refinement.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 161 of file sptrfs.f.

subroutine zptrfs (character uplo, integer n, integer nrhs, double precision, dimension( * ) d, complex*16, dimension( * ) e, double precision, dimension( * ) df, complex*16, dimension( * ) ef, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)

ZPTRFS  

Purpose:

 ZPTRFS improves the computed solution to a system of linear
 equations when the coefficient matrix is Hermitian positive definite
 and tridiagonal, and provides error bounds and backward error
 estimates for the solution.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the superdiagonal or the subdiagonal of the
          tridiagonal matrix A is stored and the form of the
          factorization:
          = 'U':  E is the superdiagonal of A, and A = U**H*D*U;
          = 'L':  E is the subdiagonal of A, and A = L*D*L**H.
          (The two forms are equivalent if A is real.)

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

D

          D is DOUBLE PRECISION array, dimension (N)
          The n real diagonal elements of the tridiagonal matrix A.

E

          E is COMPLEX*16 array, dimension (N-1)
          The (n-1) off-diagonal elements of the tridiagonal matrix A
          (see UPLO).

DF

          DF is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the diagonal matrix D from
          the factorization computed by ZPTTRF.

EF

          EF is COMPLEX*16 array, dimension (N-1)
          The (n-1) off-diagonal elements of the unit bidiagonal
          factor U or L from the factorization computed by ZPTTRF
          (see UPLO).

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side matrix B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is COMPLEX*16 array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by ZPTTRS.
          On exit, the improved solution matrix X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

FERR

          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).

BERR

          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is COMPLEX*16 array, dimension (N)

RWORK

          RWORK is DOUBLE PRECISION array, dimension (N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Internal Parameters:

  ITMAX is the maximum number of steps of iterative refinement.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 181 of file zptrfs.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK