pbequ - Man Page
pbequ: equilibration
Synopsis
Functions
subroutine cpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
CPBEQU
subroutine dpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
DPBEQU
subroutine spbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
SPBEQU
subroutine zpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
ZPBEQU
Detailed Description
Function Documentation
subroutine cpbequ (character uplo, integer n, integer kd, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) s, real scond, real amax, integer info)
CPBEQU
Purpose:
CPBEQU computes row and column scalings intended to equilibrate a Hermitian positive definite band matrix A and reduce its condition number (with respect to the two-norm). S contains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S puts the condition number of B within a factor N of the smallest possible condition number over all possible diagonal scalings.
- Parameters
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangular of A is stored; = 'L': Lower triangular of A is stored.
N
N is INTEGER The order of the matrix A. N >= 0.
KD
KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX array, dimension (LDAB,N) The upper or lower triangle of the Hermitian band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB
LDAB is INTEGER The leading dimension of the array A. LDAB >= KD+1.
S
S is REAL array, dimension (N) If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is REAL If INFO = 0, S contains the ratio of the smallest S(i) to the largest S(i). If SCOND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by S.
AMAX
AMAX is REAL Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the i-th diagonal element is nonpositive.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 129 of file cpbequ.f.
subroutine dpbequ (character uplo, integer n, integer kd, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) s, double precision scond, double precision amax, integer info)
DPBEQU
Purpose:
DPBEQU computes row and column scalings intended to equilibrate a symmetric positive definite band matrix A and reduce its condition number (with respect to the two-norm). S contains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S puts the condition number of B within a factor N of the smallest possible condition number over all possible diagonal scalings.
- Parameters
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangular of A is stored; = 'L': Lower triangular of A is stored.
N
N is INTEGER The order of the matrix A. N >= 0.
KD
KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is DOUBLE PRECISION array, dimension (LDAB,N) The upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB
LDAB is INTEGER The leading dimension of the array A. LDAB >= KD+1.
S
S is DOUBLE PRECISION array, dimension (N) If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is DOUBLE PRECISION If INFO = 0, S contains the ratio of the smallest S(i) to the largest S(i). If SCOND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by S.
AMAX
AMAX is DOUBLE PRECISION Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the i-th diagonal element is nonpositive.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 128 of file dpbequ.f.
subroutine spbequ (character uplo, integer n, integer kd, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) s, real scond, real amax, integer info)
SPBEQU
Purpose:
SPBEQU computes row and column scalings intended to equilibrate a symmetric positive definite band matrix A and reduce its condition number (with respect to the two-norm). S contains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S puts the condition number of B within a factor N of the smallest possible condition number over all possible diagonal scalings.
- Parameters
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangular of A is stored; = 'L': Lower triangular of A is stored.
N
N is INTEGER The order of the matrix A. N >= 0.
KD
KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is REAL array, dimension (LDAB,N) The upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB
LDAB is INTEGER The leading dimension of the array A. LDAB >= KD+1.
S
S is REAL array, dimension (N) If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is REAL If INFO = 0, S contains the ratio of the smallest S(i) to the largest S(i). If SCOND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by S.
AMAX
AMAX is REAL Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the i-th diagonal element is nonpositive.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 128 of file spbequ.f.
subroutine zpbequ (character uplo, integer n, integer kd, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) s, double precision scond, double precision amax, integer info)
ZPBEQU
Purpose:
ZPBEQU computes row and column scalings intended to equilibrate a Hermitian positive definite band matrix A and reduce its condition number (with respect to the two-norm). S contains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S puts the condition number of B within a factor N of the smallest possible condition number over all possible diagonal scalings.
- Parameters
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangular of A is stored; = 'L': Lower triangular of A is stored.
N
N is INTEGER The order of the matrix A. N >= 0.
KD
KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB,N) The upper or lower triangle of the Hermitian band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB
LDAB is INTEGER The leading dimension of the array A. LDAB >= KD+1.
S
S is DOUBLE PRECISION array, dimension (N) If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is DOUBLE PRECISION If INFO = 0, S contains the ratio of the smallest S(i) to the largest S(i). If SCOND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by S.
AMAX
AMAX is DOUBLE PRECISION Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the i-th diagonal element is nonpositive.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 129 of file zpbequ.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.