lis_esolver_set_option - Man Page

set the options for the eigensolver

Synopsis

#include "lis.h"

LIS_INT lis_esolver_set_option(char *text, LIS_ESOLVER *esolver);

Description

Set the options for the eigensolver.

Input

text

The command line options

Output

esolver

The eigensolver

Exit Status

The following exit values are returned:

0

The process is normally terminated

unspecified

An error occurred

Note

The table below shows the available command line options, where -e {pi|1} means -e pi  or -e 1 and -emaxiter [1000] indicates that -emaxiter defaults to 1,000.

Options

The following options are supported:

-e eigensolver

The following options are supported for eigensolver:

-e {pi|1}

Power

-e {ii|2}

Inverse

-i [bicg]

The linear solver

-e {rqi|3}

Rayleigh Quotient

-i [bicg]

The linear solver

-e {cg|4}

CG

-i [cg]

The linear solver

-e {cr|5}

CR

-i [bicg]

The linear solver

-e {si|6}

Subspace

-ss [1]

The size of the subspace

-e {li|7}

Lanczos

-ss [1]

The size of the subspace

-e {ai|8}

Arnoldi

-ss [1]

The size of the subspace

-e {gpi|9}

Generalized Power

-i [bicg]

The linear solver

-e {gii|10}

Generalized Inverse

-i [bicg]

The linear solver

-e {grqi|11}

Generalized Rayleigh Quotient

-i [bicg]

The linear solver

-e {gcg|12}

Generalized CG

-i [cg]

The linear solver

-e {gcr|13}

Generalized CR

-i [bicg]

The linear solver

-e {gsi|14}

Generalized Subspace

-ss [1]

The size of the subspace

-e {gli|15}

Generalized Lanczos

-ss [1]

The size of the subspace

-e {gai|16}

Generalized Arnoldi

-ss [1]

The size of the subspace

-i linear solver

The following options are supported for inner linear solver:

-i {cg|1}

CG

-i {bicg|2}

BiCG

-i {cgs|3}

CGS

-i {bicgstab|4}

BiCGSTAB

-i {bicgstabl|5}

BiCGSTAB(l)

-ell [2]

The degree l

-i {gpbicg|6}

GPBiCG

-i {tfqmr|7}

TFQMR

-i {orthomin|8}

Orthomin(m)

-restart [40]

The restart value m

-i {gmres|9}

GMRES(m)

-restart [40]

The restart value m

-i {jacobi|10}

Jacobi

-i {gs|11}

Gauss-Seidel

-i {sor|12}

SOR

-omega [1.9]

The relaxation coefficient omega (0<omega<2)

-i {bicgsafe|13}

BiCGSafe

-i {cr|14}

CR

-i {bicr|15}

BiCR

-i {crs|16}

CRS

-i {bicrstab|17}

BiCRSTAB

-i {gpbicr|18}

GPBiCR

-i {bicrsafe|19}

BiCRSafe

-i {fgmres|20}

FGMRES(m)

-restart [40]

The restart value m

-i {idrs|21}

IDR(s)

-irestart [2]

The restart value s

-i {idr1|22}

IDR(1)

-i {minres|23}

MINRES

-i {cocg|24}

COCG

-i {cocr|25}

COCR

-p preconditioner

The following options are supported for preconditioner:

-p {none|0}

None

-p {jacobi|1}

Jacobi

-p {ilu|2}

ILU(k)

-ilu_fill [0]

The fill level k

-p {ssor|3}

SSOR

-ssor_omega [1.0]

The relaxation coefficient omega (0<omega<2)

-p {hybrid|4}

Hybrid

-hybrid_i [sor]

The linear solver

-hybrid_maxiter [25]

The maximum number of iterations

-hybrid_tol [1.0e-3]

The convergence criterion

-hybrid_omega [1.5]

The relaxation coefficient omega of the SOR (0<omega<2)

-hybrid_ell [2]

The degree l of the BiCGSTAB(l)

-hybrid_restart [40]

The restart values of the GMRES and Orthomin

-p {is|5}

I+S

-is_alpha [1.0]

The parameter alpha of I+alpha*S(m)

-is_m [3]

The parameter m of I+alpha*S(m)

-p {sainv|6}

SAINV

-sainv_drop [0.05]

The drop criterion

-p {saamg|7}

SA-AMG

-saamg_unsym [false]

Select the unsymmetric version (The matrix structure must be symmetric)

-saamg_theta [0.05|0.12]

The drop criterion

-p {iluc|8}

Crout ILU

-iluc_drop [0.05]

The drop criterion

-iluc_rate [5.0]

The ration of maximum fill-in

-p {ilut|9}

ILUT

-ilut_drop [0.05]

The drop criterion

-ilut_rate [5.0]

The ration of maximum fill-in

-adds true

Additive Schwarz

-adds_iter [1]

The number of iteration

Other Options for eigensolver:

-emaxiter [1000]

The maximum number of iterations

-etol [1.0e-12]

The convergence criterion

-eprint [0]

The display of the residual

-eprint {none|0}

None

-eprint {mem|1}

Save the residual history

-eprint {out|2}

Display the residual history

-eprint {all|3}

Save the residual history and display it on the screen

-ie [ii]

The inner eigensolver used in Subspace, Lanczos, and Arnoldi

-ige [ii]

The inner eigensolver used in Generalized Subspace, Generalized Lanczos, and Generalized Arnoldi

-shift [0.0]

The amount of the shift

-initx_ones [true]

The behavior of the initial vector x_0

-initx_ones {false|0}

Given values

-initx_ones {true|1}

All values are set to 1

-omp_num_threads [t]

The number of threads (t represents the maximum number of threads)

-estorage [0]

The matrix storage format

-estorage_block [2]

The block size of the BSR and BSC formats

-ef [0]

The precision of the eigensolver

-ef {double|0}

Double precision

-ef {quad|1}

Double-double (quadruple) precision

Other options for inner linear solver:

-maxiter [1000]

The maximum number of iterations

-tol [1.0e-12]

The convergence criterion

-print [0]

The display of the residual

-print {none|0}

None

-print {mem|1}

Save the residual history

-print {out|2}

Display the residual history

-print {all|3}

Save the residual history and display it on the screen

-scale [0]

The scaling

-scale {none|0}

No scaling

-scale {jacobi|1}

The Jacobi scaling

-scale {symm_diag|2}

The diagonal scaling

-initx_zeros [true]

The behavior of the initial vector x_0

-initx_zero {false|0}

Given values

-initx_zero {true|1}

All values are set to 0

-omp_num_threads [t]

The number of threads (t represents the maximum number of threads)

-storage [0]

The matrix storage format

-storage_block [2]

The block size of the BSR and BSC formats

-f [0]

The precision of the linear solver

-f {double|0}

Double precision

-f {quad|1}

Double-double (quadruple) precision

See Lis User Guide for full description.

See Also

lis(3)

http://www.ssisc.org/lis/

Info

14 Sep 2017 Man Page Lis Library Functions