libcbor - Man Page
Name
libcbor — libcbor Documentation
Documentation for version 0.11.0, updated on Jul 18, 2024.
Overview
libcbor is a C library for parsing and generating CBOR, the general-purpose schema-less binary data format.
- Main features
- Complete IETF RFC 8949 (STD 94) conformance [1]
- Robust C99 implementation
- Layered architecture offers both control and convenience
- Flexible memory management
- No shared global state - threading friendly [2]
- Proper handling of UTF-8
- Full support for streams & incremental processing
- Extensive documentation and test suite
- No runtime dependencies, small footprint
- [1]
See IETF standard conformance
- [2]
With the exception of custom memory allocators (see Memory management and reference counting)
Contents
Getting started
Pre-built Linux packages are available in most mainstream distributions
Ubuntu, Debian, etc.:
apt-get install libcbor-dev
Fedora, openSUSE, etc.:
yum install libcbor-devel
OS X users can use Homebrew:
brew install libcbor
For other platforms, you will need to compile it from source.
Building & installing libcbor
- Prerequisites:
- C99 compiler
- CMake 2.8 or newer (might also be called cmakesetup, cmake-gui or ccmake depending on the installed version and system)
- C build system CMake can target (make, Apple Xcode, MinGW, ...)
Configuration options
A handful of configuration flags can be passed to cmake. The following table lists libcbor compile-time directives and several important generic flags.
Option | Meaning | Default | Possible values |
CMAKE_C_COMPILER | C compiler to use | cc | gcc, clang, clang-3.5, ... |
CMAKE_INSTALL_PREFIX | Installation prefix | System-dependent | /usr/local/lib, ... |
BUILD_SHARED_LIBS | Build as a shared library | OFF | ON, OFF |
HUGE_FUZZ | Fuzz test with 8GB of data | OFF | ON, OFF |
SANE_MALLOC | Assume malloc will refuse unreasonable allocations | OFF | ON, OFF |
COVERAGE | Generate test coverage instrumentation | OFF | ON, OFF |
WITH_TESTS | Build unit tests (see Development) | OFF | ON, OFF |
The following configuration options will also be defined as macros [1] in <cbor/common.h> and can therefore be used in client code:
Option | Meaning | Default | Possible values |
CBOR_PRETTY_PRINTER | Include a pretty-printing routine | ON | ON, OFF |
CBOR_BUFFER_GROWTH | Factor for buffer growth & shrinking | 2 | Decimals > 1 |
- [1]
ON & OFF will be translated to 1 and 0 using cmakedefine.
If you want to pass other custom configuration options, please refer to http://www.cmake.org/Wiki/CMake_Useful_Variables.
WARNING:
CBOR_CUSTOM_ALLOC has been removed. Custom allocators (historically a controlled by a build flag) are always enabled.
Building using make
CMake will generate a Makefile and other configuration files for the build. As a rule of thumb, you should configure the build outside of the source tree in order to keep different configurations isolated. If you are unsure where to execute the build, just use a temporary directory:
cd $(mktemp -d /tmp/cbor_build.XXXX)
Now, assuming you are in the directory where you want to build, build libcbor as a static library:
cmake -DCMAKE_BUILD_TYPE=Release path_to_libcbor_dir make cbor
... or as a dynamic library:
cmake -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=ON path_to_libcbor_dir make cbor
To install locally:
make install
Root permissions are required on most systems when using the default installation prefix.
Portability
libcbor is highly portable and works on both little- and big-endian systems regardless of the operating system. After building on an exotic platform, you might wish to verify the result by running the test suite. If you encounter any problems, please report them to the issue tracker.
libcbor is known to successfully work on ARM Android devices. Cross-compilation is possible with arm-linux-gnueabi-gcc.
Linking with libcbor
If you include and linker paths include the directories to which libcbor has been installed, compiling programs that uses libcbor requires no extra considerations.
You can verify that everything has been set up properly by creating a file with the following contents
#include <cbor.h> #include <stdio.h> int main(int argc, char * argv[]) { printf("Hello from libcbor %s\n", CBOR_VERSION); }
and compiling it
cc hello_cbor.c -lcbor -o hello_cbor
libcbor also comes with pkg-config support. If you install libcbor with a custom prefix, you can use pkg-config to resolve the headers and objects:
cc $(pkg-config --cflags libcbor) hello_cbor.c $(pkg-config --libs libcbor) -o hello_cbor
A note on linkage
libcbor is primarily intended to be linked statically. The shared library versioning scheme generally follows SemVer, but is irregular for the 0.X.Y development branch for historical reasons. The following version identifiers are used as a part of the SONAME (Linux) or the dylib "Compatibility version" (OS X):
- 0.Y for the 0.Y.Z branch. Patches are backwards compatible, minor releases are generally not and require re-compilation of any dependent code.
- X for the X.Y.Z stable versions starting 1.X.Y. All minor release of the major version are backwards compatible.
- WARNING:
Please note that releases up to and including v0.6.0 may export misleading .so/.dylib version number.
Troubleshooting
cbor.h not found: The headers directory is probably not in your include path. First, verify the installation location by checking the installation log. If you used make, it will look something like
... -- Installing: /usr/local/include/cbor -- Installing: /usr/local/include/cbor/callbacks.h -- Installing: /usr/local/include/cbor/encoding.h ...
Make sure that CMAKE_INSTALL_PREFIX (if you provided it) was correct. Including the path path during compilation should suffice, e.g.:
cc -I/usr/local/include hello_cbor.c -lcbor -o hello_cbor
cannot find -lcbor during linking: Most likely the same problem as before. Include the installation directory in the linker shared path using -R, e.g.:
cc -Wl,-rpath,/usr/local/lib -lcbor -o hello_cbor
shared library missing during execution: Verify the linkage using ldd, otool, or similar and adjust the compilation directives accordingly:
⇒ ldd hello_cbor linux-vdso.so.1 => (0x00007ffe85585000) libcbor.so => /usr/local/lib/libcbor.so (0x00007f9af69da000) libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f9af65eb000) /lib64/ld-linux-x86-64.so.2 (0x00007f9af6be9000)
compilation failed: If your compiler supports C99 yet the compilation has failed, please report the issue to the issue tracker.
Usage & preliminaries
Version information
libcbor exports its version using three self-explanatory macros:
- CBOR_MAJOR_VERSION
- CBOR_MINOR_VERSION
- CBOR_PATCH_VERSION
The CBOR_VERSION is a string concatenating these three identifiers into one (e.g. 0.2.0).
In order to simplify version comparisons, the version is also exported as
#define CBOR_HEX_VERSION ((CBOR_MAJOR_VERSION << 16) | (CBOR_MINOR_VERSION << 8) | CBOR_PATCH_VERSION)
Since macros are difficult to work with through FFIs, the same information is also available through three uint8_t constants, namely
- cbor_major_version
- cbor_minor_version
- cbor_patch_version
Headers to include
The cbor.h header includes all the symbols. If, for any reason, you don't want to include all the exported symbols, feel free to use just some of the cbor/*.h headers:
- cbor/arrays.h - Type 4 – Arrays
- cbor/bytestrings.h - Type 2 – Byte strings
- cbor/callbacks.h - Callbacks used for Streaming Decoding
- cbor/common.h - Common utilities - always transitively included
- cbor/data.h - Data types definitions - always transitively included
- cbor/encoding.h - Streaming encoders for Streaming Encoding
- cbor/floats_ctrls.h - Type 7 – Floats & control tokens
- cbor/ints.h - Types 0 & 1 – Positive and negative integers
- cbor/maps.h - Type 5 – Maps
- cbor/serialization.h - High level serialization such as cbor_serialize()
- cbor/streaming.h - Home of cbor_stream_decode()
- cbor/strings.h - Type 3 – UTF-8 strings
- cbor/tags.h - Type 6 – Semantic tags
Using libcbor
If you want to get more familiar with CBOR, we recommend the cbor.io website. Once you get the grasp of what is it CBOR does, the examples (located in the examples directory) should give you a good feel of the API. The API documentation should then provide with all the information you may need.
Creating and serializing items
#include "cbor.h" #include <stdio.h> int main(int argc, char * argv[]) { /* Preallocate the map structure */ cbor_item_t * root = cbor_new_definite_map(2); /* Add the content */ cbor_map_add(root, (struct cbor_pair) { .key = cbor_move(cbor_build_string("Is CBOR awesome?")), .value = cbor_move(cbor_build_bool(true)) }); cbor_map_add(root, (struct cbor_pair) { .key = cbor_move(cbor_build_uint8(42)), .value = cbor_move(cbor_build_string("Is the answer")) }); /* Output: `buffer_size` bytes of data in the `buffer` */ unsigned char * buffer; size_t buffer_size; cbor_serialize_alloc(root, &buffer, &buffer_size); fwrite(buffer, 1, buffer_size, stdout); free(buffer); fflush(stdout); cbor_decref(&root); }
Reading serialized data
#include "cbor.h" #include <stdio.h> /* * Reads data from a file. Example usage: * $ ./examples/readfile examples/data/nested_array.cbor */ int main(int argc, char * argv[]) { FILE * f = fopen(argv[1], "rb"); fseek(f, 0, SEEK_END); size_t length = (size_t)ftell(f); fseek(f, 0, SEEK_SET); unsigned char * buffer = malloc(length); fread(buffer, length, 1, f); /* Assuming `buffer` contains `info.st_size` bytes of input data */ struct cbor_load_result result; cbor_item_t * item = cbor_load(buffer, length, &result); /* Pretty-print the result */ cbor_describe(item, stdout); fflush(stdout); /* Deallocate the result */ cbor_decref(&item); fclose(f); }
Using the streaming parser
#include "cbor.h" #include <stdio.h> #include <string.h> /* * Illustrates how one might skim through a map (which is assumed to have * string keys and values only), looking for the value of a specific key * * Use the examples/data/map.cbor input to test this. */ const char * key = "a secret key"; bool key_found = false; void find_string(void * _ctx, cbor_data buffer, size_t len) { if (key_found) { printf("Found the value: %*s\n", (int) len, buffer); key_found = false; } else if (len == strlen(key)) { key_found = (memcmp(key, buffer, len) == 0); } } int main(int argc, char * argv[]) { FILE * f = fopen(argv[1], "rb"); fseek(f, 0, SEEK_END); size_t length = (size_t)ftell(f); fseek(f, 0, SEEK_SET); unsigned char * buffer = malloc(length); fread(buffer, length, 1, f); struct cbor_callbacks callbacks = cbor_empty_callbacks; struct cbor_decoder_result decode_result; size_t bytes_read = 0; callbacks.string = find_string; while (bytes_read < length) { decode_result = cbor_stream_decode(buffer + bytes_read, length - bytes_read, &callbacks, NULL); bytes_read += decode_result.read; } fclose(f); }
API
The data API is centered around cbor_item_t, a generic handle for any CBOR item. There are functions to
- create items,
- set items' data,
- parse serialized data into items,
- manage, move, and links item together.
The single most important thing to keep in mind is: cbor_item_t is an opaque type and should only be manipulated using the appropriate functions! Think of it as an object.
The libcbor API closely follows the semantics outlined by CBOR standard. This part of the documentation provides a short overview of the CBOR constructs, as well as a general introduction to the libcbor API. Remaining reference can be found in the following files structured by data types.
The API is designed to allow both very tight control & flexibility and general convenience with sane defaults. [1] For example, client with very specific requirements (constrained environment, custom application protocol built on top of CBOR, etc.) may choose to take full control (and responsibility) of memory and data structures management by interacting directly with the decoder. Other clients might want to take control of specific aspects (streamed collections, hash maps storage), but leave other responsibilities to libcbor. More general clients might prefer to be abstracted away from all aforementioned details and only be presented complete data structures.
- libcbor provides
- stateless encoders and decoders
- encoding and decoding drivers, routines that coordinate encoding and decoding of complex structures
- data structures to represent and transform CBOR structures
- routines for building and manipulating these structures
- utilities for inspection and debugging
Types of items
Every cbor_item_t has a cbor_type associated with it - these constants correspond to the types specified by the CBOR standard:
- enum cbor_type
Specifies the Major type of cbor_item_t.
Values:
- enumerator CBOR_TYPE_UINT
0 - positive integers
- enumerator CBOR_TYPE_NEGINT
1 - negative integers
- enumerator CBOR_TYPE_BYTESTRING
2 - byte strings
- enumerator CBOR_TYPE_STRING
3 - strings
- enumerator CBOR_TYPE_ARRAY
4 - arrays
- enumerator CBOR_TYPE_MAP
5 - maps
- enumerator CBOR_TYPE_TAG
6 - tags
- enumerator CBOR_TYPE_FLOAT_CTRL
7 - decimals and special values (true, false, nil, ...)
To find out the type of an item, one can use
- cbor_type cbor_typeof(const cbor_item_t *item)
Get the type of the item.
- param item
- return
The type
Please note the distinction between functions like cbor_isa_uint() and cbor_is_int(). The following functions work solely with the major type value.
Binary queries
Alternatively, there are functions to query each particular type.
- WARNING:
Passing an invalid cbor_item_t reference to any of these functions results in undefined behavior.
- bool cbor_isa_uint(const cbor_item_t *item)
Does the item have the appropriate major type?
- param item
the item
- return
Is the item an CBOR_TYPE_UINT?
- bool cbor_isa_negint(const cbor_item_t *item)
Does the item have the appropriate major type?
- param item
the item
- return
Is the item a CBOR_TYPE_NEGINT?
- bool cbor_isa_bytestring(const cbor_item_t *item)
Does the item have the appropriate major type?
- param item
the item
- return
Is the item a CBOR_TYPE_BYTESTRING?
- bool cbor_isa_string(const cbor_item_t *item)
Does the item have the appropriate major type?
- param item
the item
- return
Is the item a CBOR_TYPE_STRING?
- bool cbor_isa_array(const cbor_item_t *item)
Does the item have the appropriate major type?
- param item
the item
- return
Is the item an CBOR_TYPE_ARRAY?
- bool cbor_isa_map(const cbor_item_t *item)
Does the item have the appropriate major type?
- param item
the item
- return
Is the item a CBOR_TYPE_MAP?
- bool cbor_isa_tag(const cbor_item_t *item)
Does the item have the appropriate major type?
- param item
the item
- return
Is the item a CBOR_TYPE_TAG?
- bool cbor_isa_float_ctrl(const cbor_item_t *item)
Does the item have the appropriate major type?
- param item
the item
- return
Is the item a CBOR_TYPE_FLOAT_CTRL?
Logical queries
These functions provide information about the item type from a more high-level perspective
- bool cbor_is_int(const cbor_item_t *item)
Is the item an integer, either positive or negative?
- param item
the item
- return
Is the item an integer, either positive or negative?
- bool cbor_is_float(const cbor_item_t *item)
Is the item an a floating point number?
- param item
the item
- return
Is the item a floating point number?
- bool cbor_is_bool(const cbor_item_t *item)
Is the item an a boolean?
- param item
the item
- return
Is the item a boolean?
- bool cbor_is_null(const cbor_item_t *item)
Does this item represent null
- WARNING:
This is in no way related to the value of the pointer. Passing a null pointer will most likely result in a crash.
- param item
the item
- return
Is the item (CBOR logical) null?
- bool cbor_is_undef(const cbor_item_t *item)
Does this item represent undefined
- WARNING:
Care must be taken to distinguish nulls and undefined values in C.
- param item
the item
- return
Is the item (CBOR logical) undefined?
Memory management and reference counting
Due to the nature of its domain, libcbor will need to work with heap memory. The stateless decoder and encoder doesn't allocate any memory.
If you have specific requirements, you should consider rolling your own driver for the stateless API.
Using custom allocator
libcbor gives you with the ability to provide your own implementations of malloc, realloc, and free. This can be useful if you are using a custom allocator throughout your application, or if you want to implement custom policies (e.g. tighter restrictions on the amount of allocated memory).
cbor_set_allocs(malloc, realloc, free);
- void cbor_set_allocs(_cbor_malloc_t custom_malloc, _cbor_realloc_t custom_realloc, _cbor_free_t custom_free)
Sets the memory management routines to use.
By default, libcbor will use the standard library malloc, realloc, and free.
NOTE:
realloc implementation must correctly support NULL reallocation (see e.g. http://en.cppreference.com/w/c/memory/realloc)
- WARNING:
This function modifies the global state and should therefore be used accordingly. Changing the memory handlers while allocated items exist will result in a free/malloc mismatch. This function is not thread safe with respect to both itself and all the other libcbor functions that work with the heap.
- param custom_malloc
malloc implementation
- param custom_realloc
realloc implementation
- param custom_free
free implementation
Reference counting
As CBOR items may require complex cleanups at the end of their lifetime, there is a reference counting mechanism in place. This also enables a very simple GC when integrating libcbor into a managed environment. Every item starts its life (by either explicit creation, or as a result of parsing) with reference count set to 1. When the refcount reaches zero, it will be destroyed.
Items containing nested items will be destroyed recursively - the refcount of every nested item will be decreased by one.
The destruction is synchronous and renders any pointers to items with refcount zero invalid immediately after calling cbor_decref().
- cbor_item_t *cbor_incref(cbor_item_t *item)
Increases the item's reference count by one.
Constant complexity; items referring to this one or items being referred to are not updated.
This function can be used to extend reference counting to client code.
- param item
Reference to an item
- return
The input item
- void cbor_decref(cbor_item_t **item)
Decreases the item's reference count by one, deallocating the item if needed.
In case the item is deallocated, the reference count of all items this item references will also be cbor_decref 'ed recursively.
- param item
Reference to an item. Will be set to NULL if deallocated
- void cbor_intermediate_decref(cbor_item_t *item)
Decreases the item's reference count by one, deallocating the item if needed.
Convenience wrapper for cbor_decref when its set-to-null behavior is not needed
- param item
Reference to an item
- size_t cbor_refcount(const cbor_item_t *item)
Get the item's reference count.
- Todo:
Add some inline examples for reference counting
- WARNING:
This does not account for transitive references.
- param item
the item
- return
the reference count
- cbor_item_t *cbor_move(cbor_item_t *item)
Provides CPP-like move construct.
Decreases the reference count by one, but does not deallocate the item even if its refcount reaches zero. This is useful for passing intermediate values to functions that increase reference count. Should only be used with functions that incref their arguments.
- WARNING:
If the item is moved without correctly increasing the reference count afterwards, the memory will be leaked.
- param item
Reference to an item
- return
the item with reference count decreased by one
- cbor_item_t *cbor_copy(cbor_item_t *item)
Take a deep copy of an item.
All items this item points to (array and map members, string chunks, tagged items) will be copied recursively using cbor_copy. The new item doesn't alias or point to any items from the original item. All the reference counts in the new structure are set to one.
- param item
item to copy
- return
Reference to the new item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
Decoding
The following diagram illustrates the relationship among different parts of libcbor from the decoding standpoint.
┌──────────────────────────────────────────────────────────────────────────────────────────────┐ │ │ │ Client application │ │ │ │ ┌────────────────────────────────────────────┘ │ │ ↕ │ │ ┌──────────────────────────────────────────┐ │ │ │ │ │ │ │ Manipulation routines │ │ │ │ │ │ ┌─────────────────────────────────────┘ └──────────────────────────────────────────┘ │ │ ↑ ↑ ↑ ↑ │ │ │ │ ┌─────────────╫──────────┬───────────────────┴─┐ │ │ │ CDS │ ║ │ │ │ │ │ │ PDS ║ PDS PDS │ │ ↓ ↓ ↓ ↓ ↓ ↓ │ │ ┌─────────────────┐ ┌────────────────────┐ ┌────────────────────────────┐ │ │ │ │ │ │ │ │ │ │ │ Custom driver │ ↔ │ Streaming driver │ ↔ │ Default driver │ ↔ CD │ │ │ │ │ │ │ │ └───────────┘ └─────────────────┘ └────────────────────┘ └────────────────────────────┘ ↕ ↕ ↕ ↕ ┌──────────────────────────────────────────────────────────────────────────────────────────────┐ │ │ │ Stateless event─driven decoder │ │ │ └──────────────────────────────────────────────────────────────────────────────────────────────┘ (PSD = Provided Data Structures, CDS = Custom Data Structures)
This section will deal with the API that is labeled as the "Default driver" in the diagram. That is, routines that decode complete libcbor data items
- cbor_item_t *cbor_load(cbor_data source, size_t source_size, struct cbor_load_result *result)
Loads data item from a buffer.
- param source
The buffer
- param source_size
- param result
[out] Result indicator. CBOR_ERR_NONE on success
- return
Decoded CBOR item. The item's reference count is initialized to one.
- return
NULL on failure. In that case, result contains the location and description of the error.
Associated data structures
- enum cbor_error_code
Possible decoding errors.
Values:
enumerator CBOR_ERR_NONE
enumerator CBOR_ERR_NOTENOUGHDATA
enumerator CBOR_ERR_NODATA
enumerator CBOR_ERR_MALFORMATED
- enumerator CBOR_ERR_MEMERROR
Memory error - item allocation failed.
Is it too big for your allocator?
- enumerator CBOR_ERR_SYNTAXERROR
Stack parsing algorithm failed.
- struct cbor_load_result
High-level decoding result.
Public Members
- struct cbor_error error
Error indicator.
- size_t read
Number of bytes read.
- struct cbor_error
High-level decoding error.
Public Members
- size_t position
Approximate position.
- cbor_error_code code
Description.
Encoding
The easiest way to encode data items is using the cbor_serialize() or cbor_serialize_alloc() functions:
- size_t cbor_serialize(const cbor_item_t *item, cbor_mutable_data buffer, size_t buffer_size)
Serialize the given item.
- param item
A data item
- param buffer
Buffer to serialize to
- param buffer_size
Size of the buffer
- return
Length of the result. 0 on failure.
- size_t cbor_serialize_alloc(const cbor_item_t *item, unsigned char **buffer, size_t *buffer_size)
Serialize the given item, allocating buffers as needed.
Since libcbor v0.10, the return value is always the same as buffer_size (if provided, see https://github.com/PJK/libcbor/pull/251/). New clients should ignore the return value.
- WARNING:
It is the caller's responsibility to free the buffer using an appropriate free implementation.
- param item
A data item
- param buffer
[out] Buffer containing the result
- param buffer_size
[out] Size of the buffer, or 0 on memory allocation failure.
- return
Length of the result in bytes
- return
0 on memory allocation failure, in which case buffer is NULL.
To determine the number of bytes needed to serialize an item, use cbor_serialized_size():
- size_t cbor_serialized_size(const cbor_item_t *item)
Compute the length (in bytes) of the item when serialized using cbor_serialize.
Time complexity is proportional to the number of nested items.
- param item
A data item
- return
Length (>= 1) of the item when serialized. 0 if the length overflows size_t.
Type-specific serializers
In case you know the type of the item you want to serialize beforehand, you can use one of the type-specific serializers.
- NOTE:
Unless compiled in debug mode, these do not verify the type. Passing an incorrect item will result in an undefined behavior.
- size_t cbor_serialize_uint(const cbor_item_t *item, cbor_mutable_data buffer, size_t buffer_size)
Serialize an uint.
- param item
A uint
- param buffer
[out] Buffer to serialize to
- param buffer_size
Size of the buffer
- return
Length of the result
- return
0 if the buffer_size doesn't fit the result
- size_t cbor_serialize_negint(const cbor_item_t *item, cbor_mutable_data buffer, size_t buffer_size)
Serialize a negint.
- param item
A negint
- param buffer
[out] Buffer to serialize to
- param buffer_size
Size of the buffer
- return
Length of the result
- return
0 if the buffer_size doesn't fit the result
- size_t cbor_serialize_bytestring(const cbor_item_t *item, cbor_mutable_data buffer, size_t buffer_size)
Serialize a bytestring.
- param item
A bytestring
- param buffer
[out] Buffer to serialize to
- param buffer_size
Size of the buffer
- return
Length of the result
- return
0 if the buffer_size doesn't fit the result. The buffer may still be modified
- size_t cbor_serialize_string(const cbor_item_t *item, cbor_mutable_data buffer, size_t buffer_size)
Serialize a string.
- param item
A string
- param buffer
[out] Buffer to serialize to
- param buffer_size
Size of the buffer
- return
Length of the result
- return
0 if the buffer_size doesn't fit the result. The buffer may still be modified
- size_t cbor_serialize_array(const cbor_item_t *item, cbor_mutable_data buffer, size_t buffer_size)
Serialize an array.
- param item
An array
- param buffer
[out] Buffer to serialize to
- param buffer_size
Size of the buffer
- return
Length of the result
- return
0 if the buffer_size doesn't fit the result. The buffer may still be modified
- size_t cbor_serialize_map(const cbor_item_t *item, cbor_mutable_data buffer, size_t buffer_size)
Serialize a map.
- param item
A map
- param buffer
[out] Buffer to serialize to
- param buffer_size
Size of the buffer
- return
Length of the result
- return
0 if the buffer_size doesn't fit the result. The buffer may still be modified
- size_t cbor_serialize_tag(const cbor_item_t *item, cbor_mutable_data buffer, size_t buffer_size)
Serialize a tag.
- param item
A tag
- param buffer
[out] Buffer to serialize to
- param buffer_size
Size of the buffer
- return
Length of the result
- return
0 if the buffer_size doesn't fit the result. The buffer may still be modified
- size_t cbor_serialize_float_ctrl(const cbor_item_t *item, cbor_mutable_data buffer, size_t buffer_size)
Serialize a.
- param item
A float or ctrl
- param buffer
[out] Buffer to serialize to
- param buffer_size
Size of the buffer
- return
Length of the result
- return
0 if the buffer_size doesn't fit the result
Streaming Decoding
libcbor exposes a stateless decoder that reads a stream of input bytes from a buffer and invokes user-provided callbacks as it decodes the input:
- struct cbor_decoder_result cbor_stream_decode(cbor_data source, size_t source_size, const struct cbor_callbacks *callbacks, void *context)
Stateless decoder.
Will try parsing the source and will invoke the appropriate callback on success. Decodes one item at a time. No memory allocations occur.
- param source
Input buffer
- param source_size
Length of the buffer
- param callbacks
The callback bundle
- param context
An arbitrary pointer to allow for maintaining context.
For example, when cbor_stream_decode() encounters a 1B unsigned integer, it will invoke the function pointer stored in cbor_callbacks.uint8. Complete usage example: examples/streaming_parser.c
The callbacks are defined by
- struct cbor_callbacks
Callback bundle — passed to the decoder.
Public Members
- cbor_int8_callback uint8
Unsigned int.
- cbor_int16_callback uint16
Unsigned int.
- cbor_int32_callback uint32
Unsigned int.
- cbor_int64_callback uint64
Unsigned int.
- cbor_int64_callback negint64
Negative int.
- cbor_int32_callback negint32
Negative int.
- cbor_int16_callback negint16
Negative int.
- cbor_int8_callback negint8
Negative int.
- cbor_simple_callback byte_string_start
Definite byte string.
- cbor_string_callback byte_string
Indefinite byte string start.
- cbor_string_callback string
Definite string.
- cbor_simple_callback string_start
Indefinite string start.
- cbor_simple_callback indef_array_start
Definite array.
- cbor_collection_callback array_start
Indefinite array.
- cbor_simple_callback indef_map_start
Definite map.
- cbor_collection_callback map_start
Indefinite map.
- cbor_int64_callback tag
Tags.
- cbor_float_callback float2
Half float.
- cbor_float_callback float4
Single float.
- cbor_double_callback float8
Double float.
- cbor_simple_callback undefined
Undef.
- cbor_simple_callback null
Null.
- cbor_bool_callback boolean
Bool.
- cbor_simple_callback indef_break
Indefinite item break.
When building custom sets of callbacks, feel free to start from
- const struct cbor_callbacks cbor_empty_callbacks
Dummy callback bundle - does nothing.
Callback types definition
- typedef void (*cbor_int8_callback)(void*, uint8_t)
Callback prototype.
- typedef void (*cbor_int16_callback)(void*, uint16_t)
Callback prototype.
- typedef void (*cbor_int32_callback)(void*, uint32_t)
Callback prototype.
- typedef void (*cbor_int64_callback)(void*, uint64_t)
Callback prototype.
- typedef void (*cbor_simple_callback)(void*)
Callback prototype.
- typedef void (*cbor_string_callback)(void*, cbor_data, uint64_t)
Callback prototype.
- typedef void (*cbor_collection_callback)(void*, uint64_t)
Callback prototype.
- typedef void (*cbor_float_callback)(void*, float)
Callback prototype.
- typedef void (*cbor_double_callback)(void*, double)
Callback prototype.
- typedef void (*cbor_bool_callback)(void*, bool)
Callback prototype.
Streaming Encoding
cbor/encoding.h exposes a low-level encoding API to encode CBOR objects on the fly. Unlike cbor_serialize(), these functions take logical values (integers, floats, strings, etc.) instead of cbor_item_t. The client is responsible for constructing the compound types correctly (e.g. terminating arrays).
Streaming encoding is typically used to create an streaming (indefinite length) CBOR strings, byte strings, arrays, and maps. Complete example: examples/streaming_array.c
size_t cbor_encode_uint8(uint8_t value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_uint16(uint16_t value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_uint32(uint32_t value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_uint64(uint64_t value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_uint(uint64_t value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_negint8(uint8_t value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_negint16(uint16_t value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_negint32(uint32_t value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_negint64(uint64_t value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_negint(uint64_t value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_bytestring_start(size_t length, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_indef_bytestring_start(unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_string_start(size_t length, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_indef_string_start(unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_array_start(size_t length, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_indef_array_start(unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_map_start(size_t length, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_indef_map_start(unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_tag(uint64_t value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_bool(bool value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_null(unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_undef(unsigned char *buffer, size_t buffer_size)
- size_t cbor_encode_half(float value, unsigned char *buffer, size_t buffer_size)
Encodes a half-precision float.
Since there is no native representation or semantics for half floats in the language, we use single-precision floats, as every value that can be expressed as a half-float can also be expressed as a float.
This however means that not all floats passed to this function can be unambiguously encoded. The behavior is as follows:.INDENT 7.0
- ·
Infinity, NaN are preserved
- ·
Zero is preserved
- ·
Denormalized numbers keep their sign bit and 10 most significant bit of the significand
- ·
All other numbers.INDENT 2.0
- ·
If the logical value of the exponent is < -24, the output is zero
- ·
If the logical value of the exponent is between -23 and -14, the output is cut off to represent the 'magnitude' of the input, by which we mean (-1)^{signbit} x 1.0e{exponent}. The value in the significand is lost.
- ·
In all other cases, the sign bit, the exponent, and 10 most significant bits of the significand are kept
size_t cbor_encode_single(float value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_double(double value, unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_break(unsigned char *buffer, size_t buffer_size)
size_t cbor_encode_ctrl(uint8_t value, unsigned char *buffer, size_t buffer_size)
Types 0 & 1 – Positive and negative integers
CBOR has two types of integers – positive (which may be effectively regarded as unsigned), and negative. There are four possible widths for an integer – 1, 2, 4, or 8 bytes. These are represented by
- enum cbor_int_width
Possible widths of CBOR_TYPE_UINT items.
Values:
enumerator CBOR_INT_8
enumerator CBOR_INT_16
enumerator CBOR_INT_32
enumerator CBOR_INT_64
Type 0 - positive integers
Corresponding cbor_type | CBOR_TYPE_UINT |
Number of allocations | One per lifetime |
Storage requirements | sizeof(cbor_item_t) + sizeof(uint*_t) |
Note: once a positive integer has been created, its width cannot be changed.
Type 1 - negative integers
Corresponding cbor_type | CBOR_TYPE_NEGINT |
Number of allocations | One per lifetime |
Storage requirements | sizeof(cbor_item_t) + sizeof(uint*_t) |
Note: once a positive integer has been created, its width cannot be changed.
Type 0 & 1
Due to their largely similar semantics, the following functions can be used for both Type 0 and Type 1 items. One can convert between them freely using the conversion functions.
Actual Type of the integer can be checked using item types API.
An integer item is created with one of the four widths. Because integers' storage is bundled together with the handle, the width cannot be changed over its lifetime.
WARNING:
Due to the fact that CBOR negative integers represent integers in the range [-1, -2^N], cbor_set_uint API is somewhat counter-intuitive as the resulting logical value is 1 less. This behavior is necessary in order to permit uniform manipulation with the full range of permitted values. For example, the following snippet
cbor_item_t * item = cbor_new_int8(); cbor_mark_negint(item); cbor_set_uint8(0);
will produce an item with the logical value of -1. There is, however, an upside to this as well: There is only one representation of zero.
Building new items
- cbor_item_t *cbor_build_uint8(uint8_t value)
Constructs a new positive integer.
- param value
the value to use
- return
new positive integer or NULL on memory allocation failure
- cbor_item_t *cbor_build_uint16(uint16_t value)
Constructs a new positive integer.
- param value
the value to use
- return
new positive integer or NULL on memory allocation failure
- cbor_item_t *cbor_build_uint32(uint32_t value)
Constructs a new positive integer.
- param value
the value to use
- return
new positive integer or NULL on memory allocation failure
- cbor_item_t *cbor_build_uint64(uint64_t value)
Constructs a new positive integer.
- param value
the value to use
- return
new positive integer or NULL on memory allocation failure
Retrieving values
- uint8_t cbor_get_uint8(const cbor_item_t *item)
Extracts the integer value.
- param item
positive or negative integer
- return
the value
- uint16_t cbor_get_uint16(const cbor_item_t *item)
Extracts the integer value.
- param item
positive or negative integer
- return
the value
- uint32_t cbor_get_uint32(const cbor_item_t *item)
Extracts the integer value.
- param item
positive or negative integer
- return
the value
- uint64_t cbor_get_uint64(const cbor_item_t *item)
Extracts the integer value.
- param item
positive or negative integer
- return
the value
Setting values
- void cbor_set_uint8(cbor_item_t *item, uint8_t value)
Assigns the integer value.
- param item
positive or negative integer item
- param value
the value to assign. For negative integer, the logical value is -value - 1
- void cbor_set_uint16(cbor_item_t *item, uint16_t value)
Assigns the integer value.
- param item
positive or negative integer item
- param value
the value to assign. For negative integer, the logical value is -value - 1
- void cbor_set_uint32(cbor_item_t *item, uint32_t value)
Assigns the integer value.
- param item
positive or negative integer item
- param value
the value to assign. For negative integer, the logical value is -value - 1
- void cbor_set_uint64(cbor_item_t *item, uint64_t value)
Assigns the integer value.
- param item
positive or negative integer item
- param value
the value to assign. For negative integer, the logical value is -value - 1
Dealing with width
- cbor_int_width cbor_int_get_width(const cbor_item_t *item)
Queries the integer width.
- param item
positive or negative integer item
- return
the width
Dealing with signedness
- void cbor_mark_uint(cbor_item_t *item)
Marks the integer item as a positive integer.
The data value is not changed
- param item
positive or negative integer item
- void cbor_mark_negint(cbor_item_t *item)
Marks the integer item as a negative integer.
The data value is not changed
- param item
positive or negative integer item
Creating new items
- cbor_item_t *cbor_new_int8(void)
Allocates new integer with 1B width.
The width cannot be changed once allocated
- return
new positive integer or NULL on memory allocation failure. The value is not initialized
- cbor_item_t *cbor_new_int16(void)
Allocates new integer with 2B width.
The width cannot be changed once allocated
- return
new positive integer or NULL on memory allocation failure. The value is not initialized
- cbor_item_t *cbor_new_int32(void)
Allocates new integer with 4B width.
The width cannot be changed once allocated
- return
new positive integer or NULL on memory allocation failure. The value is not initialized
- cbor_item_t *cbor_new_int64(void)
Allocates new integer with 8B width.
The width cannot be changed once allocated
- return
new positive integer or NULL on memory allocation failure. The value is not initialized
Type 2 – Byte strings
CBOR byte strings are just (ordered) series of bytes without further interpretation (unless there is a tag). Byte string's length may or may not be known during encoding. These two kinds of byte strings can be distinguished using cbor_bytestring_is_definite() and cbor_bytestring_is_indefinite() respectively.
In case a byte string is indefinite, it is encoded as a series of definite byte strings. These are called "chunks". For example, the encoded item
0xf5 Start indefinite byte string 0x41 Byte string (1B long) 0x00 0x41 Byte string (1B long) 0xff 0xff "Break" control token
represents two bytes, 0x00 and 0xff. This on one hand enables streaming messages even before they are fully generated, but on the other hand it adds more complexity to the client code.
Corresponding cbor_type | CBOR_TYPE_BYTESTRING |
Number of allocations (definite) | One plus any manipulations with the data |
Number of allocations (indefinite) | One plus logarithmically many reallocations relative to chunk count |
Storage requirements (definite) | sizeof(cbor_item_t) + length(handle) |
Storage requirements (indefinite) | sizeof(cbor_item_t) * (1 + chunk_count) + chunks |
Getting metadata
- size_t cbor_bytestring_length(const cbor_item_t *item)
Returns the length of the binary data.
For definite byte strings only
- param item
a definite bytestring
- return
length of the binary data. Zero if no chunk has been attached yet
- bool cbor_bytestring_is_definite(const cbor_item_t *item)
Is the byte string definite?
- param item
a byte string
- return
Is the byte string definite?
- bool cbor_bytestring_is_indefinite(const cbor_item_t *item)
Is the byte string indefinite?
- param item
a byte string
- return
Is the byte string indefinite?
- size_t cbor_bytestring_chunk_count(const cbor_item_t *item)
Get the number of chunks this string consist of.
- param item
A indefinite bytestring
- return
The chunk count. 0 for freshly created items.
Reading data
- cbor_mutable_data cbor_bytestring_handle(const cbor_item_t *item)
Get the handle to the binary data.
Definite items only. Modifying the data is allowed. In that case, the caller takes responsibility for the effect on items this item might be a part of
- param item
A definite byte string
- return
The address of the underlying binary data
- return
NULL if no data have been assigned yet.
- cbor_item_t **cbor_bytestring_chunks_handle(const cbor_item_t *item)
Get the handle to the array of chunks.
Manipulations with the memory block (e.g. sorting it) are allowed, but the validity and the number of chunks must be retained.
- param item
A indefinite byte string
- return
array of cbor_bytestring_chunk_count definite bytestrings
Creating new items
- cbor_item_t *cbor_new_definite_bytestring(void)
Creates a new definite byte string.
The handle is initialized to NULL and length to 0
- return
Reference to the new bytestring item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_new_indefinite_bytestring(void)
Creates a new indefinite byte string.
The chunks array is initialized to NULL and chunk count to 0
- return
Reference to the new bytestring item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
Building items
- cbor_item_t *cbor_build_bytestring(cbor_data handle, size_t length)
Creates a new byte string and initializes it.
The handle will be copied to a newly allocated block
- param handle
Block of binary data
- param length
Length of data
- return
Reference to the new bytestring item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
Manipulating existing items
- void cbor_bytestring_set_handle(cbor_item_t *item, cbor_mutable_data data, size_t length)
Set the handle to the binary data.
- param item
A definite byte string
- param data
The memory block. The caller gives up the ownership of the block. libcbor will deallocate it when appropriate using the free implementation configured using cbor_set_allocs
- param length
Length of the data block
- bool cbor_bytestring_add_chunk(cbor_item_t *item, cbor_item_t *chunk)
Appends a chunk to the bytestring.
Indefinite byte strings only.
May realloc the chunk storage.
- param item
An indefinite byte string
- param chunk
A definite byte string. Its reference count will be be increased by one.
- return
true on success, false on realloc failure. In that case, the refcount of chunk is not increased and the item is left intact.
Type 3 – UTF-8 strings
CBOR strings have the same structure as Type 2 – Byte strings.
Corresponding cbor_type | CBOR_TYPE_STRING |
Number of allocations (definite) | One plus any manipulations with the data |
Number of allocations (indefinite) | One plus logarithmically many reallocations relative to chunk count |
Storage requirements (definite) | sizeof(cbor_item_t) + length(handle) |
Storage requirements (indefinite) | sizeof(cbor_item_t) * (1 + chunk_count) + chunks |
UTF-8 encoding validation
libcbor considers UTF-8 encoding validity to be a part of the well-formedness notion of CBOR and therefore invalid UTF-8 strings will be rejected by the parser. Strings created by the user are not checked.
Getting metadata
- size_t cbor_string_length(const cbor_item_t *item)
Returns the length of the underlying string in bytes.
There can be fewer unicode character than bytes (see cbor_string_codepoint_count). For definite strings only.
- param item
a definite string
- return
length of the string. Zero if no chunk has been attached yet
- bool cbor_string_is_definite(const cbor_item_t *item)
Is the string definite?
- param item
a string
- return
Is the string definite?
- bool cbor_string_is_indefinite(const cbor_item_t *item)
Is the string indefinite?
- param item
a string
- return
Is the string indefinite?
- size_t cbor_string_chunk_count(const cbor_item_t *item)
Get the number of chunks this string consist of.
- param item
A indefinite string
- return
The chunk count. 0 for freshly created items.
Reading data
- cbor_mutable_data cbor_string_handle(const cbor_item_t *item)
Get the handle to the underlying string.
Definite items only. Modifying the data is allowed. In that case, the caller takes responsibility for the effect on items this item might be a part of
- param item
A definite string
- return
The address of the underlying string.
- return
NULL if no data have been assigned yet.
- cbor_item_t **cbor_string_chunks_handle(const cbor_item_t *item)
Get the handle to the array of chunks.
Manipulations with the memory block (e.g. sorting it) are allowed, but the validity and the number of chunks must be retained.
- param item
A indefinite string
- return
array of cbor_string_chunk_count definite strings
Creating new items
- cbor_item_t *cbor_new_definite_string(void)
Creates a new definite string.
The handle is initialized to NULL and length to 0
- return
Reference to the new string item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_new_indefinite_string(void)
Creates a new indefinite string.
The chunks array is initialized to NULL and chunkcount to 0
- return
Reference to the new string item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
Building items
- cbor_item_t *cbor_build_string(const char *val)
Creates a new string and initializes it.
The data from val will be copied to a newly allocated memory block.
Note that valid UTF-8 strings do not contain null bytes, so this routine is correct for all valid inputs. If the input is not guaranteed to be valid, use cbor_build_stringn instead.
- param val
A null-terminated UTF-8 string
- return
Reference to the new string item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
Manipulating existing items
- void cbor_string_set_handle(cbor_item_t *item, cbor_mutable_data data, size_t length)
Set the handle to the underlying string.
The data is assumed to be a valid UTF-8 string. If the string is non-empty and invalid, cbor_string_codepoint_count will return 0.
- WARNING:
Using a pointer to a stack allocated constant is a common mistake. Lifetime of the string will expire when it goes out of scope and the CBOR item will be left inconsistent.
- param item
A definite string
- param data
The memory block. The caller gives up the ownership of the block. libcbor will deallocate it when appropriate using its free function
- param length
Length of the data block
- bool cbor_string_add_chunk(cbor_item_t *item, cbor_item_t *chunk)
Appends a chunk to the string.
Indefinite strings only.
May realloc the chunk storage.
- param item
An indefinite string
- param chunk
A definite string item. Its reference count will be increased by one.
- return
true on success. false on memory allocation failure. In that case, the refcount of `chunk` is not increased and the `item` is left intact.
Type 4 – Arrays
CBOR arrays, just like byte strings and strings, can be encoded either as definite, or as indefinite. Definite arrays have a fixed size which is stored in the header, whereas indefinite arrays do not and are terminated by a special "break" byte instead.
Arrays are explicitly created or decoded as definite or indefinite and will be encoded using the corresponding wire representation, regardless of whether the actual size is known at the time of encoding.
NOTE:
Indefinite arrays can be conveniently used with streaming decoding and encoding.
Corresponding cbor_type | CBOR_TYPE_ARRAY |
Number of allocations (definite) | Two plus any manipulations with the data |
Number of allocations (indefinite) | Two plus logarithmically many reallocations relative to additions |
Storage requirements (definite) | (sizeof(cbor_item_t) + 1) * size |
Storage requirements (indefinite) | <= sizeof(cbor_item_t) + sizeof(cbor_item_t) * size * BUFFER_GROWTH |
Examples
0x9f Start indefinite array 0x01 Unsigned integer 1 0xff "Break" control token
0x9f Start array, 1B length follows 0x20 Unsigned integer 32 ... 32 items follow
Getting metadata
- size_t cbor_array_size(const cbor_item_t *item)
Get the number of members.
- param item
An array
- return
The number of members
- size_t cbor_array_allocated(const cbor_item_t *item)
Get the size of the allocated storage.
- param item
An array
- return
The size of the allocated storage (number of items)
- bool cbor_array_is_definite(const cbor_item_t *item)
Is the array definite?
- param item
An array
- return
Is the array definite?
- bool cbor_array_is_indefinite(const cbor_item_t *item)
Is the array indefinite?
- param item
An array
- return
Is the array indefinite?
Reading data
- cbor_item_t **cbor_array_handle(const cbor_item_t *item)
Get the array contents.
The items may be reordered and modified as long as references remain consistent.
- param item
An array item
- return
An array of cbor_item_t pointers of size cbor_array_size.
- cbor_item_t *cbor_array_get(const cbor_item_t *item, size_t index)
Get item by index.
Increases the reference count of the underlying item. The returned reference must be released using cbor_decref.
- param item
An array
- param index
The index (zero-based)
- return
Reference to the item, or NULL in case of boundary violation.
Creating new items
- cbor_item_t *cbor_new_definite_array(size_t size)
Create new definite array.
- param size
Number of slots to preallocate
- return
Reference to the new array item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_new_indefinite_array(void)
Create new indefinite array.
- return
Reference to the new array item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
Modifying items
- bool cbor_array_push(cbor_item_t *array, cbor_item_t *pushee)
Append to the end.
For indefinite items, storage may be reallocated. For definite items, only the preallocated capacity is available.
- param array
An array
- param pushee
The item to push. Its reference count will be increased by one.
- return
true on success, false on failure
- bool cbor_array_replace(cbor_item_t *item, size_t index, cbor_item_t *value)
Replace item at an index.
The reference to the item being replaced will be released using cbor_decref.
- param item
An array
- param value
The item to assign. Its reference count will be increased by one.
- param index
The index (zero-based)
- return
true on success, false on allocation failure.
- bool cbor_array_set(cbor_item_t *item, size_t index, cbor_item_t *value)
Set item by index.
If the index is out of bounds, the array is not modified and false is returned. Creating arrays with holes is not possible.
- param item
An array
- param value
The item to assign
- param index
The index (zero-based)
- return
true on success, false on allocation failure.
Type 5 – Maps
CBOR maps are the plain old associative maps similar JSON objects or Python dictionaries.
Definite maps have a fixed size which is stored in the header, whereas indefinite maps do not and are terminated by a special "break" byte instead.
Map are explicitly created or decoded as definite or indefinite and will be encoded using the corresponding wire representation, regardless of whether the actual size is known at the time of encoding.
- NOTE:
Indefinite maps can be conveniently used with streaming decoding and encoding. Keys and values can simply be output one by one, alternating keys and values.
- WARNING:
Any CBOR data item is a legal map key (not just strings).
Corresponding cbor_type | CBOR_TYPE_MAP |
Number of allocations (definite) | Two plus any manipulations with the data |
Number of allocations (indefinite) | Two plus logarithmically many reallocations relative to additions |
Storage requirements (definite) | sizeof(cbor_pair) * size + sizeof(cbor_item_t) |
Storage requirements (indefinite) | <= sizeof(cbor_item_t) + sizeof(cbor_pair) * size * BUFFER_GROWTH |
Examples
0xbf Start indefinite map (represents {1: 2}) 0x01 Unsigned integer 1 (key) 0x02 Unsigned integer 2 (value) 0xff "Break" control token
0xa0 Map of size 0
Getting metadata
- size_t cbor_map_size(const cbor_item_t *item)
Get the number of pairs.
- param item
A map
- return
The number of pairs
- size_t cbor_map_allocated(const cbor_item_t *item)
Get the size of the allocated storage.
- param item
A map
- return
Allocated storage size (as the number of cbor_pair items)
- bool cbor_map_is_definite(const cbor_item_t *item)
Is this map definite?
- param item
A map
- return
Is this map definite?
- bool cbor_map_is_indefinite(const cbor_item_t *item)
Is this map indefinite?
- param item
A map
- return
Is this map indefinite?
Reading data
- struct cbor_pair *cbor_map_handle(const cbor_item_t *item)
Get the pairs storage.
- param item
A map
- return
Array of cbor_map_size pairs. Manipulation is possible as long as references remain valid.
Creating new items
- cbor_item_t *cbor_new_definite_map(size_t size)
Create a new definite map.
- param size
The number of slots to preallocate
- return
Reference to the new map item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_new_indefinite_map(void)
Create a new indefinite map.
- return
Reference to the new map item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
Modifying items
- bool cbor_map_add(cbor_item_t *item, struct cbor_pair pair)
Add a pair to the map.
For definite maps, items can only be added to the preallocated space. For indefinite maps, the storage will be expanded as needed
- param item
A map
- param pair
The key-value pair to add. Reference count of the cbor_pair.key and cbor_pair.value will be increased by one.
- return
true on success, false if memory allocation failed (indefinite maps) or the preallocated storage is full (definite maps)
Type 7 – Floats & control tokens
This type combines two completely unrelated types of items -- floating point numbers and special values such as true, false, null, etc. We refer to these special values as 'control values' or 'ctrls' for short throughout the code.
Just like integers, they have different possible width (resulting in different value ranges and precisions).
- enum cbor_float_width
Possible widths of CBOR_TYPE_FLOAT_CTRL items.
Values:
- enumerator CBOR_FLOAT_0
Internal use - ctrl and special values.
- enumerator CBOR_FLOAT_16
Half float.
- enumerator CBOR_FLOAT_32
Single float.
- enumerator CBOR_FLOAT_64
Double.
Corresponding cbor_type | CBOR_TYPE_FLOAT_CTRL |
Number of allocations | One per lifetime |
Storage requirements | sizeof(cbor_item_t) + 1/4/8 |
Getting metadata
- bool cbor_float_ctrl_is_ctrl(const cbor_item_t *item)
Is this a ctrl value?
- param item
A float or ctrl item
- return
Is this a ctrl value?
- cbor_float_width cbor_float_get_width(const cbor_item_t *item)
Get the float width.
- param item
A float or ctrl item
- return
The width.
Reading data
- float cbor_float_get_float2(const cbor_item_t *item)
Get a half precision float.
The item must have the corresponding width
- param item
A half precision float
- return
half precision value
- float cbor_float_get_float4(const cbor_item_t *item)
Get a single precision float.
The item must have the corresponding width
- param item
A single precision float
- return
single precision value
- double cbor_float_get_float8(const cbor_item_t *item)
Get a double precision float.
The item must have the corresponding width
- param item
A double precision float
- return
double precision value
- double cbor_float_get_float(const cbor_item_t *item)
Get the float value represented as double.
Can be used regardless of the width.
- param item
Any float
- return
double precision value
- uint8_t cbor_ctrl_value(const cbor_item_t *item)
Reads the control value.
- param item
A ctrl item
- return
the simple value
- bool cbor_get_bool(const cbor_item_t *item)
Get value from a boolean ctrl item.
- param item
A ctrl item
- return
boolean value
Creating new items
- cbor_item_t *cbor_new_ctrl(void)
Constructs a new ctrl item.
The width cannot be changed once the item is created
- return
Reference to the new ctrl item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_new_float2(void)
Constructs a new float item.
The width cannot be changed once the item is created
- return
Reference to the new float item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_new_float4(void)
Constructs a new float item.
The width cannot be changed once the item is created
- return
Reference to the new float item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_new_float8(void)
Constructs a new float item.
The width cannot be changed once the item is created
- return
Reference to the new float item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_new_null(void)
Constructs new null ctrl item.
- return
Reference to the new null item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_new_undef(void)
Constructs new undef ctrl item.
- return
Reference to the new undef item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
Building items
- cbor_item_t *cbor_build_bool(bool value)
Constructs new boolean ctrl item.
- param value
The value to use
- return
Reference to the new boolean item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_build_ctrl(uint8_t value)
Constructs a ctrl item.
- param value
the value to use
- return
Reference to the new ctrl item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_build_float2(float value)
Constructs a new float.
- param value
the value to use
- return
Reference to the new float item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_build_float4(float value)
Constructs a new float.
- param value
the value to use
- return
Reference to the new float item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
- cbor_item_t *cbor_build_float8(double value)
Constructs a new float.
- param value
the value to use
- return
Reference to the new float item. The item's reference count is initialized to one.
- return
NULL if memory allocation fails
Manipulating existing items
- void cbor_set_ctrl(cbor_item_t *item, uint8_t value)
Assign a control value.
- WARNING:
It is possible to produce an invalid CBOR value by assigning a invalid value using this mechanism. Please consult the standard before use.
- param item
A ctrl item
- param value
The simple value to assign. Please consult the standard for allowed values
- void cbor_set_bool(cbor_item_t *item, bool value)
Assign a boolean value to a boolean ctrl item.
- param item
A ctrl item
- param value
The simple value to assign.
- void cbor_set_float2(cbor_item_t *item, float value)
Assigns a float value.
- param item
A half precision float
- param value
The value to assign
- void cbor_set_float4(cbor_item_t *item, float value)
Assigns a float value.
- param item
A single precision float
- param value
The value to assign
- void cbor_set_float8(cbor_item_t *item, double value)
Assigns a float value.
- param item
A double precision float
- param value
The value to assign
Half floats
CBOR supports two bytes wide ("half-precision") floats which are not supported by the C language. libcbor represents them using float <https://en.cppreference.com/w/c/language/type> values throughout the API. Encoding will be performed by cbor_encode_half(), which will handle any values that cannot be represented as a half-float.
Tests
Unit tests
There is a comprehensive test suite employing CMocka. You can run all of them using ctest in the build directory. Individual tests are themselves runnable. Please refer to CTest documentation for detailed information on how to specify particular subset of tests.
Testing for memory leaks
Every release is tested for memory correctness. You can run these tests by passing the -T memcheck flag to ctest. [1]
- [1]
Project should be configured with -DCMAKE_BUILD_TYPE=Debug to obtain meaningful description of location of the leak. You might also need --dsymutil=yes on OS X.
Code coverage
Every release is inspected using GCOV/LCOV. Platform-independent code should be fully covered by the test suite. Simply run
make coverage
or alternatively run lcov by hand using
lcov --capture --directory . --output-file coverage.info genhtml coverage.info --output-directory out
Fuzz testing
Every release is tested using a fuzz test. In this test, a huge buffer filled with random data is passed to the decoder. We require that it either succeeds or fail with a sensible error, without leaking any memory. This is intended to simulate real-world situations where data received from the network are CBOR-decoded before any further processing.
IETF standard conformance
libcbor is, generally speaking, a very faithful implementation of IETF RFC 8949 (STD 94). There are, however, some limitations related to the numerical range and precision available in portable C99.
Bytestring length
There is no explicit limitation of indefinite length byte strings. [1] libcbor will not handle byte strings with more chunks than the maximum value of size_t. On any sane platform, such string would not fit in the memory anyway. It is, however, possible to process arbitrarily long strings and byte strings using the streaming decoder.
“Half-precision” IEEE 754 floats
As of C99 and even C11, there is no standard implementation for 2 bytes floats. libcbor packs them as a float <https://en.cppreference.com/w/c/language/type>. When encoding, libcbor selects the appropriate wire representation based on metadata and the actual value. This applies both to canonical and normal mode.
For more information on half-float serialization, please refer to the section on Half floats.
Internal mechanics
Internal workings of libcbor are mostly derived from the specification. The purpose of this document is to describe technical choices made during design & implementation and to explicate the reasoning behind those choices.
Terminology
MTB | Major Type Byte | https://www.rfc-editor.org/rfc/rfc8949.html#section-3.1 |
DST | Dynamically Sized Type | Type whose storage requirements cannot be determined during compilation (originated in the Rust community) |
Conventions
API symbols start with cbor_ or CBOR_ prefix, internal symbols have _cbor_ or _CBOR_ prefix.
General notes on the API design
The API design has two main driving principles:
- Let the client manage the memory as much as possible
- Behave exactly as specified by the standard
Combining these two principles in practice turns out to be quite difficult. Indefinite-length strings, arrays, and maps require client to handle every fixed-size chunk explicitly in order to
- ensure the client never runs out of memory due to libcbor
use realloc() sparsely and predictably [1]
- provide strong guarantees about its usage (to prevent latency spikes)
- provide APIs to avoid realloc() altogether
- allow proper handling of (streamed) data bigger than available memory
- [1]
Reasonable handling of DSTs requires reallocation if the API is to remain sane.
Coding style
This code loosely follows the Linux kernel coding style. Tabs are tabs, and they are 4 characters wide.
Memory layout
CBOR is very dynamic in the sense that it contains many data elements of variable length, sometimes even indefinite length. This section describes internal representation of all CBOR data types.
Generally speaking, data items consist of three parts:
- a generic handle,
- the associated metadata,
- and the actual data
- type cbor_item_t
Represents the item. Used as an opaque type
- cbor_type type
Type discriminator
- size_t refcount
Reference counter. Used by cbor_decref(), cbor_incref()
- union cbor_item_metadata metadata
Union discriminated by type. Contains type-specific metadata
- unsigned char *data
Contains pointer to the actual data. Small, fixed size items (Types 0 & 1 – Positive and negative integers, Type 6 – Semantic tags, Type 7 – Floats & control tokens) are allocated as a single memory block.
Consider the following snippet
cbor_item_t * item = cbor_new_int8();
then the memory is laid out as follows
+-----------+---------------+---------------+-----------------------------------++-----------+ | | | | || | | type | refcount | metadata | data || uint8_t | | | | | (= item + sizeof(cbor_item_t)) || | +-----------+---------------+---------------+-----------------------------------++-----------+ ^ ^ | | +--- item +--- item->data
Dynamically sized types (Type 2 – Byte strings, Type 3 – UTF-8 strings, Type 4 – Arrays, Type 5 – Maps) may store handle and data in separate locations. This enables creating large items (e.g byte strings) without realloc() or copying large blocks of memory. One simply attaches the correct pointer to the handle.
- type cbor_item_metadata
Union type of the following members, based on the item type:
- struct _cbor_int_metadata int_metadata
Used both by both Types 0 & 1 – Positive and negative integers
struct _cbor_bytestring_metadata bytestring_metadata
struct _cbor_string_metadata string_metadata
struct _cbor_array_metadata array_metadata
struct _cbor_map_metadata map_metadata
struct _cbor_tag_metadata tag_metadata
struct _cbor_float_ctrl_metadata float_ctrl_metadata
Decoding
As outlined in API, there decoding is based on the streaming decoder Essentially, the decoder is a custom set of callbacks for the streaming decoder.
Changelog
Template: - [Fix issue X in feature Y](https://github.com/PJK/libcbor/pull/XXX) (by [YYY](https://github.com/YYY))
Next
0.11.0 (2024-02-04)
- [Updated documentation to refer to RFC 8949](https://github.com/PJK/libcbor/issues/269)
- Improvements to cbor_describe - [Bytestring data will now be printed as well](https://github.com/PJK/libcbor/pull/281) by [akallabeth](https://github.com/akallabeth) - [Formatting consistency and clarity improvements](https://github.com/PJK/libcbor/pull/285)
- [Fix cbor_string_set_handle not setting the codepoint count](https://github.com/PJK/libcbor/pull/286)
- BREAKING: [cbor_load will no longer fail on input strings that are well-formed but not valid UTF-8](https://github.com/PJK/libcbor/pull/286) - If you were relying on the validation, please check the result using cbor_string_codepoint_count instead
- BREAKING: [All decoders like cbor_load and cbor_stream_decode will accept all well-formed tag values](https://github.com/PJK/libcbor/pull/308) (bug discovered by [dskern-github](https://github.com/dskern-github)) - Previously, decoding of certain values would fail with CBOR_ERR_MALFORMATED or CBOR_DECODER_ERROR - This also makes decoding symmetrical with serialization, which already accepts all values
0.10.2 (2023-01-31)
- [Fixed minor test bug causing failures for x86 Linux](https://github.com/PJK/libcbor/pull/266) (discovered by [trofi](https://github.com/PJK/libcbor/issues/263)) - Actual libcbor functionality not affected, bug was in the test suite
- [Made tests platform-independent](https://github.com/PJK/libcbor/pull/272)
0.10.1 (2022-12-30)
- [Fix a regression in cbor_serialize_alloc that caused serialization of zero-length strings and bytestrings or byte/strings with zero-length chunks to fail](https://github.com/PJK/libcbor/pull/260) (discovered by [martelletto](https://github.com/martelletto))
0.10.0 (2022-12-29)
- Make the buffer_size optional in cbor_serialize_alloc [[#205]](https://github.com/PJK/libcbor/pull/205) (by [hughsie](https://github.com/hughsie))
- BREAKING: Improved half-float encoding for denormalized numbers. [[#208]](https://github.com/PJK/libcbor/pull/208) (by [ranvis](https://github.com/ranvis)) - Denormalized half-floats will now preserve data in the mantissa - Note: Half-float NaNs still lose data (https://github.com/PJK/libcbor/issues/215)
- BUILD BREAKING: Minimum CMake version is 3.0 [[#201]](https://github.com/PJK/libcbor/pull/201) (by [thewtex@](https://github.com/thewtex)) - See https://repology.org/project/cmake/versions for support; the vast majority of users should not be affected.
- Fix a potential memory leak when the allocator fails during array or map decoding [[#224]](https://github.com/PJK/libcbor/pull/224) (by [James-ZHANG](https://github.com/James-ZHANG))
- [Fix a memory leak when the allocator fails when adding chunks to indefinite bytestrings.](https://github.com/PJK/libcbor/pull/242) ([discovered](https://github.com/PJK/libcbor/pull/228) by [James-ZHANG](https://github.com/James-ZHANG))
- [Fix a memory leak when the allocator fails when adding chunks to indefinite strings](https://github.com/PJK/libcbor/pull/246)
- Potentially BUILD BREAKING: [Add nodiscard attributes to most functions](https://github.com/PJK/libcbor/pull/248) - Warning: This may cause new build warnings and (in rare cases, depending on your configuration) errors
- BREAKING: [Fix cbor_copy leaking memory and creating invalid items when the allocator fails](https://github.com/PJK/libcbor/pull/249). - Previously, the failures were not handled in the interface. Now, cbor_copy may return NULL upon failure; clients should check the return value
- [Fix cbor_build_tag illegal memory behavior when the allocator fails](https://github.com/PJK/libcbor/pull/249)
- [Add a new cbor_serialized_size API](https://github.com/PJK/libcbor/pull/250)
- [Reworked cbor_serialize_alloc to allocate the exact amount of memory necessary upfront](https://github.com/PJK/libcbor/pull/251) - This should significantly speed up cbor_serialize_alloc for large items by avoiding multiple reallocation iterations - Clients should not use the return value of cbor_serialize_alloc. It may be removed in the future.
- BUILD BREAKING: [Deprecate CBOR_CUSTOM_ALLOC](https://github.com/PJK/libcbor/pull/237) - cbor_set_allocs will always be enabled from now on - Note: The flag will be kept as a no-op triggering a warning when used for one version and then removed completely
0.9.0 (2021-11-14)
- Improved pkg-config paths handling [[#164]](https://github.com/PJK/libcbor/pull/164) (by [jtojnar@](https://github.com/jtojnar))
- Use explicit math.h linkage [[#170]](https://github.com/PJK/libcbor/pull/170)
- BREAKING: Fixed handling of items that exceed the host size_t range [[#186]](https://github.com/PJK/libcbor/pull/186hg)
- Callbacks for bytestrings, strings, arrays, and maps use uint64_t instead of size_t to allow handling of large items that exceed size_t even if size_t < uint64_t
- cbor_decode explicitly checks size to avoid overflows (previously broken, potentially resulting in erroneous decoding on affected systems)
- The change should be a noop for 64b systems
- Added a [Bazel](https://bazel.build/) build example [[#196]](https://github.com/PJK/libcbor/pull/196) (by [andyjgf@](https://github.com/andyjgf))
0.8.0 (2020-09-20)
- BUILD BREAKING: Use BUILD_SHARED_LIBS to determine how to build libraries (fixed Windows linkage) [[#148]](https://github.com/PJK/libcbor/pull/148) (by [intelligide@](https://github.com/intelligide))
- BREAKING: Fix cbor_tag_item not increasing the reference count on the tagged item reference it returns [[Fixes #109](https://github.com/PJK/libcbor/issues/109)] (discovered bt [JohnGilmour](https://github.com/JohnGilmour)) - If you have previously relied on the broken behavior, you can use cbor_move to emulate as long as the returned handle is an "rvalue"
- BREAKING: [CBOR_DECODER_EBUFFER removed from cbor_decoder_status](https://github.com/PJK/libcbor/pull/156)
- cbor_stream_decode will set CBOR_DECODER_NEDATA instead if the input buffer is empty
- [Fix cbor_stream_decode](https://github.com/PJK/libcbor/pull/156) to set cbor_decoder_result.required to the minimum number of input bytes necessary to receive the next callback (as long as at least one byte was passed) (discovered by [woefulwabbit](https://github.com/woefulwabbit))
- Fixed several minor manpage issues [[#159]](https://github.com/PJK/libcbor/pull/159) (discovered by [kloczek@](https://github.com/kloczek))
0.7.0 (2020-04-25)
- Fix bad encoding of NaN half-floats [[Fixes #53]](https://github.com/PJK/libcbor/issues/53) (discovered by [BSipos-RKF](https://github.com/BSipos-RKF))
- Warning: Previous versions encoded NaNs as 0xf9e700 instead of 0xf97e00; if you rely on the broken behavior, this will be a breaking change
- Fix potentially bad encoding of negative half-float with exponent < -14 [[Fixes #112]](https://github.com/PJK/libcbor/issues/112) (discovered by [yami36](https://github.com/yami36))
- BREAKING: Improved bool support [[Fixes #63]](https://github.com/PJK/libcbor/issues/63)
- Rename cbor_ctrl_is_bool to cbor_get_bool and fix the behavior
- Add cbor_set_bool
- Fix memory_allocation_test breaking the build without CBOR_CUSTOM_ALLOC [[Fixes #128]](https://github.com/PJK/libcbor/issues/128) (by [panlinux](https://github.com/panlinux))
- [Fix a potential build issue where cJSON includes may be misconfigured](https://github.com/PJK/libcbor/pull/132)
- Breaking: [Add a limit on the size of the decoding context stack](https://github.com/PJK/libcbor/pull/138) (by [James-ZHANG](https://github.com/James-ZHANG))
- If your usecase requires parsing very deeply nested structures, you might need to increase the default 2k limit via CBOR_MAX_STACK_SIZE
- Enable LTO/IPO based on [CheckIPOSupported](https://cmake.org/cmake/help/latest/module/CheckIPOSupported.html#module:CheckIPOSupported) [[#143]](https://github.com/PJK/libcbor/pull/143) (by [xanderlent](https://github.com/xanderlent))
- If you rely on LTO being enabled and use CMake version older than 3.9, you will need to re-enable it manually or upgrade your CMake
0.6.1 (2020-03-26)
- [Fix bad shared library version number](https://github.com/PJK/libcbor/pull/131)
- Warning: Shared library built from the 0.6.0 release is erroneously marked as version "0.6.0", which makes it incompatible with future releases including the v0.6.X line even though they may be compatible API/ABI-wise. Refer to the documentation for the new SO versioning scheme.
0.6.0 (2020-03-15)
- Correctly set .so version [[Fixes #52]](https://github.com/PJK/libcbor/issues/52).
- Warning: All previous releases will be identified as 0.0 by the linker.
- Fix & prevent heap overflow error in example code [[#74]](https://github.com/PJK/libcbor/pull/74) [[#76]](https://github.com/PJK/libcbor/pull/76) (by @nevun)
- Correctly set OSX dynamic library version [[Fixes #75]](https://github.com/PJK/libcbor/issues/75)
- [Fix misplaced 0xFF bytes in maps possibly causing memory corruption](https://github.com/PJK/libcbor/pull/82)
- BREAKING: Fix handling & cleanup of failed memory allocation in constructor and builder helper functions [[Fixes #84]](https://github.com/PJK/libcbor/issues/84) - All cbor_new_* and cbor_build_* functions will now explicitly return NULL when memory allocation fails - It is up to the client to handle such cases
- Globally enforced code style [[Fixes #83]](https://github.com/PJK/libcbor/issues/83)
- Fix issue possible memory corruption bug on repeated cbor_(byte)string_add_chunk calls with intermittently failing realloc calls
- Fix possibly misaligned reads and writes when endian.h is uses or when running on a big-endian machine [[Fixes #99](https://github.com/PJK/libcbor/issues/99), [#100](https://github.com/PJK/libcbor/issues/100)]
- [Improved CI setup with Travis-native arm64 support](https://github.com/PJK/libcbor/pull/116)
- [Docs migrated to Sphinx 2.4 and Python3](https://github.com/PJK/libcbor/pull/117)
0.5.0 (2017-02-06)
- Remove cmocka from the subtree (always rely on system or user-provided version)
- Windows CI
- Only build tests if explicitly enabled (-DWITH_TESTS=ON)
- Fixed static header declarations (by cedric-d)
- Improved documentation (by Michael Richardson)
- Improved examples/readfile.c
- Reworked (re)allocation to handle huge inputs and overflows in size_t [[Fixes #16]](https://github.com/PJK/libcbor/issues/16)
- Improvements to C++ linkage (corrected cbor_empty_callbacks, fixed restrict pointers) (by Dennis Bijwaard)
- Fixed Linux installation directory depending on architecture [[Fixes #34]](https://github.com/PJK/libcbor/issues/34) (by jvymazal)
- Improved 32-bit support [[Fixes #35]](https://github.com/PJK/libcbor/issues/35)
- Fixed MSVC compatibility [[Fixes #31]](https://github.com/PJK/libcbor/issues/31)
- Fixed and improved half-float encoding [[Fixes #5](https://github.com/PJK/libcbor/issues/5), [#11](https://github.com/PJK/libcbor/issues/11)]
0.4.0 (2015-12-25)
Breaks build & header compatibility due to:
- Improved build configuration and feature check macros
- Endianness configuration fixes (by Erwin Kroon and David Grigsby)
- pkg-config compatibility (by Vincent Bernat)
- enable use of versioned SONAME (by Vincent Bernat)
- better fuzzer (wasn't random until now, ooops)
0.3.1 (2015-05-21)
- documentation and comments improvements, mostly for the API reference
0.3.0 (2015-05-21)
- Fixes, polishing, niceties across the code base
- Updated examples
- cbor_copy
- cbor_build_negint8, 16, 32, 64, matching asserts
- cbor_build_stringn
- cbor_build_tag
- cbor_build_float2, ...
0.2.1 (2015-05-17)
- C99 support
0.2.0 (2015-05-17)
- cbor_ctrl_bool -> cbor_ctrl_is_bool
- Added cbor_array_allocated & map equivalent
- Overhauled endianess conversion - ARM now works as expected
- 'sort.c' example added
- Significantly improved and doxyfied documentation
0.1.0 (2015-05-06)
The initial release, yay!
Development
Vision and principles
Consistency and coherence are one of the key characteristics of good software. While the reality is never black and white, it is important libcbor contributors are working towards the same high-level goal. This document attempts to set out the basic principles of libcbor and the rationale behind them. If you are contributing to libcbor or looking to evaluate whether libcbor is the right choice for your project, it might be worthwhile to skim through the section below.
Mission statement
libcbor is the compact, full-featured, and safe CBOR library that works everywhere.
Goals
Standard conformance and full feature support
Anything the standard allows, libcbor can do.
Why? Because conformance and interoperability is the point of defining standards. Clients expect the support to be feature-complete and there is no significant complexity reduction that can be achieved by slightly cutting corners, which means that the incremental cost of full [CBOR standard](https://www.rfc-editor.org/info/std94) support is comparatively small over "almost-conformance" seen in many alternatives.
Safety
Untrusted bytes from the network are the typical input.
Why? Because it is the client expectation. Vast majority of security vulnerabilities are violations of contracts -- in other words, bugs -- anyway.
Self-containment
libcbor has no runtime dependencies.
Why? Because any constraint imposed on libcbor has to be enforced transitively, which is difficult and leads to incompatibilities and distribution issues, especially in IoT applications.
Portability
If you can compile C for it, libcbor will work there.
Why? Lowest-common-denominator solution for system-level and IoT software was the original niche of libcbor. Users who rely on libcbor expect future updates to work on their target platform.
Stable and predictable API
libcbor will not break without a warning.
Why? Industry-standard versioning is a basic requirement for production-quality software. This is especially relevant in IoT environments where updates may be costly.
Performance
libcbor is fast and resource-efficient by design
Why? Because the main maintainer is an avid hater of slow bloated software. Who wouldn't want more bang per their electricity buck?
Non-goals
- Convenience -- libcbor only provides the minimum surface to make it usable
- FFI/SWIG/interop support -- libcbor is primarily a C library for C clients
- One-off usecases support -- although there are primitives to reuse, the basic assumption is that most clients want most of CBOR features
Development dependencies
Installing sphinx
pip install sphinx pip install sphinx_rtd_theme pip install breathe pip install https://github.com/lepture/python-livereload/archive/master.zip pip install sphinx-autobuild
Further instructions on configuring advanced features can be found at http://read-the-docs.readthedocs.org/en/latest/install.html.
Live preview of docs
cd doc make livehtml
Set up git hooks
A catch-all git hook that runs clang-format and automatically refreshes the GH pages contents located in docs can be symlinked:
ln -sf $(pwd)/misc/hooks/pre-commit .git/hooks
Testing and code coverage
Please refer to Tests
Author
Pavel Kalvoda
Copyright
2024 - 2020, Pavel Kalvoda