lasd8 - Man Page

lasd8: D&C step: secular equation

Synopsis

Functions

subroutine dlasd8 (icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info)
DLASD8 finds the square roots of the roots of the secular equation, and stores, for each element in D, the distance to its two nearest poles. Used by sbdsdc.
subroutine slasd8 (icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info)
SLASD8 finds the square roots of the roots of the secular equation, and stores, for each element in D, the distance to its two nearest poles. Used by sbdsdc.

Detailed Description

Function Documentation

subroutine dlasd8 (integer icompq, integer k, double precision, dimension( * ) d, double precision, dimension( * ) z, double precision, dimension( * ) vf, double precision, dimension( * ) vl, double precision, dimension( * ) difl, double precision, dimension( lddifr, * ) difr, integer lddifr, double precision, dimension( * ) dsigma, double precision, dimension( * ) work, integer info)

DLASD8 finds the square roots of the roots of the secular equation, and stores, for each element in D, the distance to its two nearest poles. Used by sbdsdc.  

Purpose:

 DLASD8 finds the square roots of the roots of the secular equation,
 as defined by the values in DSIGMA and Z. It makes the appropriate
 calls to DLASD4, and stores, for each  element in D, the distance
 to its two nearest poles (elements in DSIGMA). It also updates
 the arrays VF and VL, the first and last components of all the
 right singular vectors of the original bidiagonal matrix.

 DLASD8 is called from DLASD6.
Parameters

ICOMPQ

          ICOMPQ is INTEGER
          Specifies whether singular vectors are to be computed in
          factored form in the calling routine:
          = 0: Compute singular values only.
          = 1: Compute singular vectors in factored form as well.

K

          K is INTEGER
          The number of terms in the rational function to be solved
          by DLASD4.  K >= 1.

D

          D is DOUBLE PRECISION array, dimension ( K )
          On output, D contains the updated singular values.

Z

          Z is DOUBLE PRECISION array, dimension ( K )
          On entry, the first K elements of this array contain the
          components of the deflation-adjusted updating row vector.
          On exit, Z is updated.

VF

          VF is DOUBLE PRECISION array, dimension ( K )
          On entry, VF contains  information passed through DBEDE8.
          On exit, VF contains the first K components of the first
          components of all right singular vectors of the bidiagonal
          matrix.

VL

          VL is DOUBLE PRECISION array, dimension ( K )
          On entry, VL contains  information passed through DBEDE8.
          On exit, VL contains the first K components of the last
          components of all right singular vectors of the bidiagonal
          matrix.

DIFL

          DIFL is DOUBLE PRECISION array, dimension ( K )
          On exit, DIFL(I) = D(I) - DSIGMA(I).

DIFR

          DIFR is DOUBLE PRECISION array,
                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
                   dimension ( K ) if ICOMPQ = 0.
          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
          defined and will not be referenced.

          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
          normalizing factors for the right singular vector matrix.

LDDIFR

          LDDIFR is INTEGER
          The leading dimension of DIFR, must be at least K.

DSIGMA

          DSIGMA is DOUBLE PRECISION array, dimension ( K )
          On entry, the first K elements of this array contain the old
          roots of the deflated updating problem.  These are the poles
          of the secular equation.

WORK

          WORK is DOUBLE PRECISION array, dimension (3*K)

INFO

          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = 1, a singular value did not converge
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Definition at line 162 of file dlasd8.f.

subroutine slasd8 (integer icompq, integer k, real, dimension( * ) d, real, dimension( * ) z, real, dimension( * ) vf, real, dimension( * ) vl, real, dimension( * ) difl, real, dimension( lddifr, * ) difr, integer lddifr, real, dimension( * ) dsigma, real, dimension( * ) work, integer info)

SLASD8 finds the square roots of the roots of the secular equation, and stores, for each element in D, the distance to its two nearest poles. Used by sbdsdc.  

Purpose:

 SLASD8 finds the square roots of the roots of the secular equation,
 as defined by the values in DSIGMA and Z. It makes the appropriate
 calls to SLASD4, and stores, for each  element in D, the distance
 to its two nearest poles (elements in DSIGMA). It also updates
 the arrays VF and VL, the first and last components of all the
 right singular vectors of the original bidiagonal matrix.

 SLASD8 is called from SLASD6.
Parameters

ICOMPQ

          ICOMPQ is INTEGER
          Specifies whether singular vectors are to be computed in
          factored form in the calling routine:
          = 0: Compute singular values only.
          = 1: Compute singular vectors in factored form as well.

K

          K is INTEGER
          The number of terms in the rational function to be solved
          by SLASD4.  K >= 1.

D

          D is REAL array, dimension ( K )
          On output, D contains the updated singular values.

Z

          Z is REAL array, dimension ( K )
          On entry, the first K elements of this array contain the
          components of the deflation-adjusted updating row vector.
          On exit, Z is updated.

VF

          VF is REAL array, dimension ( K )
          On entry, VF contains  information passed through DBEDE8.
          On exit, VF contains the first K components of the first
          components of all right singular vectors of the bidiagonal
          matrix.

VL

          VL is REAL array, dimension ( K )
          On entry, VL contains  information passed through DBEDE8.
          On exit, VL contains the first K components of the last
          components of all right singular vectors of the bidiagonal
          matrix.

DIFL

          DIFL is REAL array, dimension ( K )
          On exit, DIFL(I) = D(I) - DSIGMA(I).

DIFR

          DIFR is REAL array,
                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
                   dimension ( K ) if ICOMPQ = 0.
          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
          defined and will not be referenced.

          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
          normalizing factors for the right singular vector matrix.

LDDIFR

          LDDIFR is INTEGER
          The leading dimension of DIFR, must be at least K.

DSIGMA

          DSIGMA is REAL array, dimension ( K )
          On entry, the first K elements of this array contain the old
          roots of the deflated updating problem.  These are the poles
          of the secular equation.

WORK

          WORK is REAL array, dimension (3*K)

INFO

          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = 1, a singular value did not converge
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Definition at line 162 of file slasd8.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK