lasd5 - Man Page
lasd5: D&C step: secular equation, 2x2
Synopsis
Functions
subroutine dlasd5 (i, d, z, delta, rho, dsigma, work)
DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
subroutine slasd5 (i, d, z, delta, rho, dsigma, work)
SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
Detailed Description
Function Documentation
subroutine dlasd5 (integer i, double precision, dimension( 2 ) d, double precision, dimension( 2 ) z, double precision, dimension( 2 ) delta, double precision rho, double precision dsigma, double precision, dimension( 2 ) work)
DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
Purpose:
This subroutine computes the square root of the I-th eigenvalue
of a positive symmetric rank-one modification of a 2-by-2 diagonal
matrix
diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
The diagonal entries in the array D are assumed to satisfy
0 <= D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.- Parameters
I
I is INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2.D
D is DOUBLE PRECISION array, dimension ( 2 ) The original eigenvalues. We assume 0 <= D(1) < D(2).Z
Z is DOUBLE PRECISION array, dimension ( 2 ) The components of the updating vector.DELTA
DELTA is DOUBLE PRECISION array, dimension ( 2 ) Contains (D(j) - sigma_I) in its j-th component. The vector DELTA contains the information necessary to construct the eigenvectors.RHO
RHO is DOUBLE PRECISION The scalar in the symmetric updating formula.DSIGMA
DSIGMA is DOUBLE PRECISION The computed sigma_I, the I-th updated eigenvalue.WORK
WORK is DOUBLE PRECISION array, dimension ( 2 ) WORK contains (D(j) + sigma_I) in its j-th component.- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
Definition at line 115 of file dlasd5.f.
subroutine slasd5 (integer i, real, dimension( 2 ) d, real, dimension( 2 ) z, real, dimension( 2 ) delta, real rho, real dsigma, real, dimension( 2 ) work)
SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
Purpose:
This subroutine computes the square root of the I-th eigenvalue
of a positive symmetric rank-one modification of a 2-by-2 diagonal
matrix
diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
The diagonal entries in the array D are assumed to satisfy
0 <= D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.- Parameters
I
I is INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2.D
D is REAL array, dimension (2) The original eigenvalues. We assume 0 <= D(1) < D(2).Z
Z is REAL array, dimension (2) The components of the updating vector.DELTA
DELTA is REAL array, dimension (2) Contains (D(j) - sigma_I) in its j-th component. The vector DELTA contains the information necessary to construct the eigenvectors.RHO
RHO is REAL The scalar in the symmetric updating formula.DSIGMA
DSIGMA is REAL The computed sigma_I, the I-th updated eigenvalue.WORK
WORK is REAL array, dimension (2) WORK contains (D(j) + sigma_I) in its j-th component.- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
Definition at line 115 of file slasd5.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.