larrr - Man Page
larrr: step in stemr, test to do expensive tridiag eig algorithm
Synopsis
Functions
subroutine dlarrr (n, d, e, info)
DLARRR performs tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.
subroutine slarrr (n, d, e, info)
SLARRR performs tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.
Detailed Description
Function Documentation
subroutine dlarrr (integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, integer info)
DLARRR performs tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.
Purpose:
Perform tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.
- Parameters
N
N is INTEGER The order of the matrix. N > 0.
D
D is DOUBLE PRECISION array, dimension (N) The N diagonal elements of the tridiagonal matrix T.
E
E is DOUBLE PRECISION array, dimension (N) On entry, the first (N-1) entries contain the subdiagonal elements of the tridiagonal matrix T; E(N) is set to ZERO.
INFO
INFO is INTEGER INFO = 0(default) : the matrix warrants computations preserving relative accuracy. INFO = 1 : the matrix warrants computations guaranteeing only absolute accuracy.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Definition at line 93 of file dlarrr.f.
subroutine slarrr (integer n, real, dimension( * ) d, real, dimension( * ) e, integer info)
SLARRR performs tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.
Purpose:
Perform tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.
- Parameters
N
N is INTEGER The order of the matrix. N > 0.
D
D is REAL array, dimension (N) The N diagonal elements of the tridiagonal matrix T.
E
E is REAL array, dimension (N) On entry, the first (N-1) entries contain the subdiagonal elements of the tridiagonal matrix T; E(N) is set to ZERO.
INFO
INFO is INTEGER INFO = 0(default) : the matrix warrants computations preserving relative accuracy. INFO = 1 : the matrix warrants computations guaranteeing only absolute accuracy.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Definition at line 93 of file slarrr.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.