larrc - Man Page
larrc: step in stemr
Synopsis
Functions
subroutine dlarrc (jobt, n, vl, vu, d, e, pivmin, eigcnt, lcnt, rcnt, info)
DLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
subroutine slarrc (jobt, n, vl, vu, d, e, pivmin, eigcnt, lcnt, rcnt, info)
SLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
Detailed Description
Function Documentation
subroutine dlarrc (character jobt, integer n, double precision vl, double precision vu, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision pivmin, integer eigcnt, integer lcnt, integer rcnt, integer info)
DLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
Purpose:
Find the number of eigenvalues of the symmetric tridiagonal matrix T that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T if JOBT = 'L'.
- Parameters
JOBT
JOBT is CHARACTER*1 = 'T': Compute Sturm count for matrix T. = 'L': Compute Sturm count for matrix L D L^T.
N
N is INTEGER The order of the matrix. N > 0.
VL
VL is DOUBLE PRECISION The lower bound for the eigenvalues.
VU
VU is DOUBLE PRECISION The upper bound for the eigenvalues.
D
D is DOUBLE PRECISION array, dimension (N) JOBT = 'T': The N diagonal elements of the tridiagonal matrix T. JOBT = 'L': The N diagonal elements of the diagonal matrix D.
E
E is DOUBLE PRECISION array, dimension (N) JOBT = 'T': The N-1 offdiagonal elements of the matrix T. JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
PIVMIN
PIVMIN is DOUBLE PRECISION The minimum pivot in the Sturm sequence for T.
EIGCNT
EIGCNT is INTEGER The number of eigenvalues of the symmetric tridiagonal matrix T that are in the interval (VL,VU]
LCNT
LCNT is INTEGER
RCNT
RCNT is INTEGER The left and right negcounts of the interval.
INFO
INFO is INTEGER
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Definition at line 135 of file dlarrc.f.
subroutine slarrc (character jobt, integer n, real vl, real vu, real, dimension( * ) d, real, dimension( * ) e, real pivmin, integer eigcnt, integer lcnt, integer rcnt, integer info)
SLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
Purpose:
Find the number of eigenvalues of the symmetric tridiagonal matrix T that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T if JOBT = 'L'.
- Parameters
JOBT
JOBT is CHARACTER*1 = 'T': Compute Sturm count for matrix T. = 'L': Compute Sturm count for matrix L D L^T.
N
N is INTEGER The order of the matrix. N > 0.
VL
VL is REAL The lower bound for the eigenvalues.
VU
VU is REAL The upper bound for the eigenvalues.
D
D is REAL array, dimension (N) JOBT = 'T': The N diagonal elements of the tridiagonal matrix T. JOBT = 'L': The N diagonal elements of the diagonal matrix D.
E
E is REAL array, dimension (N) JOBT = 'T': The N-1 offdiagonal elements of the matrix T. JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
PIVMIN
PIVMIN is REAL The minimum pivot in the Sturm sequence for T.
EIGCNT
EIGCNT is INTEGER The number of eigenvalues of the symmetric tridiagonal matrix T that are in the interval (VL,VU]
LCNT
LCNT is INTEGER
RCNT
RCNT is INTEGER The left and right negcounts of the interval.
INFO
INFO is INTEGER
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Definition at line 135 of file slarrc.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.