lantb - Man Page
lantb: triangular matrix, banded
Synopsis
Functions
real function clantb (norm, uplo, diag, n, k, ab, ldab, work)
CLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
double precision function dlantb (norm, uplo, diag, n, k, ab, ldab, work)
DLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
real function slantb (norm, uplo, diag, n, k, ab, ldab, work)
SLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
double precision function zlantb (norm, uplo, diag, n, k, ab, ldab, work)
ZLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
Detailed Description
Function Documentation
real function clantb (character norm, character uplo, character diag, integer n, integer k, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) work)
CLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
Purpose:
CLANTB returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n by n triangular band matrix A, with ( k + 1 ) diagonals.
- Returns
CLANTB
CLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
- Parameters
NORM
NORM is CHARACTER*1 Specifies the value to be returned in CLANTB as described above.
UPLO
UPLO is CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular
DIAG
DIAG is CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular
N
N is INTEGER The order of the matrix A. N >= 0. When N = 0, CLANTB is set to zero.
K
K is INTEGER The number of super-diagonals of the matrix A if UPLO = 'U', or the number of sub-diagonals of the matrix A if UPLO = 'L'. K >= 0.
AB
AB is COMPLEX array, dimension (LDAB,N) The upper or lower triangular band matrix A, stored in the first k+1 rows of AB. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). Note that when DIAG = 'U', the elements of the array AB corresponding to the diagonal elements of the matrix A are not referenced, but are assumed to be one.
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= K+1.
WORK
WORK is REAL array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I'; otherwise, WORK is not referenced.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 139 of file clantb.f.
double precision function dlantb (character norm, character uplo, character diag, integer n, integer k, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) work)
DLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
Purpose:
DLANTB returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n by n triangular band matrix A, with ( k + 1 ) diagonals.
- Returns
DLANTB
DLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
- Parameters
NORM
NORM is CHARACTER*1 Specifies the value to be returned in DLANTB as described above.
UPLO
UPLO is CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular
DIAG
DIAG is CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular
N
N is INTEGER The order of the matrix A. N >= 0. When N = 0, DLANTB is set to zero.
K
K is INTEGER The number of super-diagonals of the matrix A if UPLO = 'U', or the number of sub-diagonals of the matrix A if UPLO = 'L'. K >= 0.
AB
AB is DOUBLE PRECISION array, dimension (LDAB,N) The upper or lower triangular band matrix A, stored in the first k+1 rows of AB. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). Note that when DIAG = 'U', the elements of the array AB corresponding to the diagonal elements of the matrix A are not referenced, but are assumed to be one.
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= K+1.
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I'; otherwise, WORK is not referenced.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 138 of file dlantb.f.
real function slantb (character norm, character uplo, character diag, integer n, integer k, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) work)
SLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
Purpose:
SLANTB returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n by n triangular band matrix A, with ( k + 1 ) diagonals.
- Returns
SLANTB
SLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
- Parameters
NORM
NORM is CHARACTER*1 Specifies the value to be returned in SLANTB as described above.
UPLO
UPLO is CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular
DIAG
DIAG is CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular
N
N is INTEGER The order of the matrix A. N >= 0. When N = 0, SLANTB is set to zero.
K
K is INTEGER The number of super-diagonals of the matrix A if UPLO = 'U', or the number of sub-diagonals of the matrix A if UPLO = 'L'. K >= 0.
AB
AB is REAL array, dimension (LDAB,N) The upper or lower triangular band matrix A, stored in the first k+1 rows of AB. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). Note that when DIAG = 'U', the elements of the array AB corresponding to the diagonal elements of the matrix A are not referenced, but are assumed to be one.
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= K+1.
WORK
WORK is REAL array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I'; otherwise, WORK is not referenced.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 138 of file slantb.f.
double precision function zlantb (character norm, character uplo, character diag, integer n, integer k, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) work)
ZLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
Purpose:
ZLANTB returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n by n triangular band matrix A, with ( k + 1 ) diagonals.
- Returns
ZLANTB
ZLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
- Parameters
NORM
NORM is CHARACTER*1 Specifies the value to be returned in ZLANTB as described above.
UPLO
UPLO is CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular
DIAG
DIAG is CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular
N
N is INTEGER The order of the matrix A. N >= 0. When N = 0, ZLANTB is set to zero.
K
K is INTEGER The number of super-diagonals of the matrix A if UPLO = 'U', or the number of sub-diagonals of the matrix A if UPLO = 'L'. K >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB,N) The upper or lower triangular band matrix A, stored in the first k+1 rows of AB. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). Note that when DIAG = 'U', the elements of the array AB corresponding to the diagonal elements of the matrix A are not referenced, but are assumed to be one.
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= K+1.
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I'; otherwise, WORK is not referenced.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 139 of file zlantb.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.