laneg - Man Page
laneg: Sturm count
Synopsis
Functions
integer function dlaneg (n, d, lld, sigma, pivmin, r)
DLANEG computes the Sturm count.
integer function slaneg (n, d, lld, sigma, pivmin, r)
SLANEG computes the Sturm count.
Detailed Description
Function Documentation
integer function dlaneg (integer n, double precision, dimension( * ) d, double precision, dimension( * ) lld, double precision sigma, double precision pivmin, integer r)
DLANEG computes the Sturm count.
Purpose:
DLANEG computes the Sturm count, the number of negative pivots encountered while factoring tridiagonal T - sigma I = L D L^T. This implementation works directly on the factors without forming the tridiagonal matrix T. The Sturm count is also the number of eigenvalues of T less than sigma. This routine is called from DLARRB. The current routine does not use the PIVMIN parameter but rather requires IEEE-754 propagation of Infinities and NaNs. This routine also has no input range restrictions but does require default exception handling such that x/0 produces Inf when x is non-zero, and Inf/Inf produces NaN. For more information, see: Marques, Riedy, and Voemel, 'Benefits of IEEE-754 Features in Modern Symmetric Tridiagonal Eigensolvers,' SIAM Journal on Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624 (Tech report version in LAWN 172 with the same title.)
- Parameters
N
N is INTEGER The order of the matrix.
D
D is DOUBLE PRECISION array, dimension (N) The N diagonal elements of the diagonal matrix D.
LLD
LLD is DOUBLE PRECISION array, dimension (N-1) The (N-1) elements L(i)*L(i)*D(i).
SIGMA
SIGMA is DOUBLE PRECISION Shift amount in T - sigma I = L D L^T.
PIVMIN
PIVMIN is DOUBLE PRECISION The minimum pivot in the Sturm sequence. May be used when zero pivots are encountered on non-IEEE-754 architectures.
R
R is INTEGER The twist index for the twisted factorization that is used for the negcount.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Jason Riedy, University of California, Berkeley, USA
Definition at line 117 of file dlaneg.f.
integer function slaneg (integer n, real, dimension( * ) d, real, dimension( * ) lld, real sigma, real pivmin, integer r)
SLANEG computes the Sturm count.
Purpose:
SLANEG computes the Sturm count, the number of negative pivots encountered while factoring tridiagonal T - sigma I = L D L^T. This implementation works directly on the factors without forming the tridiagonal matrix T. The Sturm count is also the number of eigenvalues of T less than sigma. This routine is called from SLARRB. The current routine does not use the PIVMIN parameter but rather requires IEEE-754 propagation of Infinities and NaNs. This routine also has no input range restrictions but does require default exception handling such that x/0 produces Inf when x is non-zero, and Inf/Inf produces NaN. For more information, see: Marques, Riedy, and Voemel, 'Benefits of IEEE-754 Features in Modern Symmetric Tridiagonal Eigensolvers,' SIAM Journal on Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624 (Tech report version in LAWN 172 with the same title.)
- Parameters
N
N is INTEGER The order of the matrix.
D
D is REAL array, dimension (N) The N diagonal elements of the diagonal matrix D.
LLD
LLD is REAL array, dimension (N-1) The (N-1) elements L(i)*L(i)*D(i).
SIGMA
SIGMA is REAL Shift amount in T - sigma I = L D L^T.
PIVMIN
PIVMIN is REAL The minimum pivot in the Sturm sequence. May be used when zero pivots are encountered on non-IEEE-754 architectures.
R
R is INTEGER The twist index for the twisted factorization that is used for the negcount.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Jason Riedy, University of California, Berkeley, USA
Definition at line 117 of file slaneg.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.