lahef_rook - Man Page
la{he,sy}f_rook: triangular factor step
Synopsis
Functions
subroutine clahef_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
subroutine clasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
CLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
subroutine dlasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
DLASYF_ROOK *> DLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
subroutine slasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
SLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
subroutine zlahef_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
subroutine zlasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
ZLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
Detailed Description
Function Documentation
subroutine clahef_rook (character uplo, integer n, integer nb, integer kb, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldw, * ) w, integer ldw, integer info)
Purpose:
CLAHEF_ROOK computes a partial factorization of a complex Hermitian matrix A using the bounded Bunch-Kaufman ('rook') diagonal pivoting method. The partial factorization has the form: A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: ( 0 U22 ) ( 0 D ) ( U12**H U22**H ) A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L' ( L21 I ) ( 0 A22 ) ( 0 I ) where the order of D is at most NB. The actual order is returned in the argument KB, and is either NB or NB-1, or N if N <= NB. Note that U**H denotes the conjugate transpose of U. CLAHEF_ROOK is an auxiliary routine called by CHETRF_ROOK. It uses blocked code (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
- Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular
N
N is INTEGER The order of the matrix A. N >= 0.
NB
NB is INTEGER The maximum number of columns of the matrix A that should be factored. NB should be at least 2 to allow for 2-by-2 pivot blocks.
KB
KB is INTEGER The number of columns of A that were actually factored. KB is either NB-1 or NB, or N if N <= NB.
A
A is COMPLEX array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D. If UPLO = 'U': Only the last KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k-1 and -IPIV(k-1) were inerchaged, D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L': Only the first KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k+1 and -IPIV(k+1) were inerchaged, D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is COMPLEX array, dimension (LDW,NB)
LDW
LDW is INTEGER The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit > 0: if INFO = k, D(k,k) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester
Definition at line 182 of file clahef_rook.f.
subroutine clasyf_rook (character uplo, integer n, integer nb, integer kb, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldw, * ) w, integer ldw, integer info)
CLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
Purpose:
CLASYF_ROOK computes a partial factorization of a complex symmetric matrix A using the bounded Bunch-Kaufman ('rook') diagonal pivoting method. The partial factorization has the form: A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' ( L21 I ) ( 0 A22 ) ( 0 I ) where the order of D is at most NB. The actual order is returned in the argument KB, and is either NB or NB-1, or N if N <= NB. CLASYF_ROOK is an auxiliary routine called by CSYTRF_ROOK. It uses blocked code (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
- Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular
N
N is INTEGER The order of the matrix A. N >= 0.
NB
NB is INTEGER The maximum number of columns of the matrix A that should be factored. NB should be at least 2 to allow for 2-by-2 pivot blocks.
KB
KB is INTEGER The number of columns of A that were actually factored. KB is either NB-1 or NB, or N if N <= NB.
A
A is COMPLEX array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D. If UPLO = 'U': Only the last KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k-1 and -IPIV(k-1) were inerchaged, D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L': Only the first KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k+1 and -IPIV(k+1) were inerchaged, D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is COMPLEX array, dimension (LDW,NB)
LDW
LDW is INTEGER The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit > 0: if INFO = k, D(k,k) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester
Definition at line 182 of file clasyf_rook.f.
subroutine dlasyf_rook (character uplo, integer n, integer nb, integer kb, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( ldw, * ) w, integer ldw, integer info)
DLASYF_ROOK *> DLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
Purpose:
DLASYF_ROOK computes a partial factorization of a real symmetric matrix A using the bounded Bunch-Kaufman ('rook') diagonal pivoting method. The partial factorization has the form: A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' ( L21 I ) ( 0 A22 ) ( 0 I ) where the order of D is at most NB. The actual order is returned in the argument KB, and is either NB or NB-1, or N if N <= NB. DLASYF_ROOK is an auxiliary routine called by DSYTRF_ROOK. It uses blocked code (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
- Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular
N
N is INTEGER The order of the matrix A. N >= 0.
NB
NB is INTEGER The maximum number of columns of the matrix A that should be factored. NB should be at least 2 to allow for 2-by-2 pivot blocks.
KB
KB is INTEGER The number of columns of A that were actually factored. KB is either NB-1 or NB, or N if N <= NB.
A
A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D. If UPLO = 'U': Only the last KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k-1 and -IPIV(k-1) were inerchaged, D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L': Only the first KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k+1 and -IPIV(k+1) were inerchaged, D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is DOUBLE PRECISION array, dimension (LDW,NB)
LDW
LDW is INTEGER The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit > 0: if INFO = k, D(k,k) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester
Definition at line 182 of file dlasyf_rook.f.
subroutine slasyf_rook (character uplo, integer n, integer nb, integer kb, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( ldw, * ) w, integer ldw, integer info)
SLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
Purpose:
SLASYF_ROOK computes a partial factorization of a real symmetric matrix A using the bounded Bunch-Kaufman ('rook') diagonal pivoting method. The partial factorization has the form: A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' ( L21 I ) ( 0 A22 ) ( 0 I ) where the order of D is at most NB. The actual order is returned in the argument KB, and is either NB or NB-1, or N if N <= NB. SLASYF_ROOK is an auxiliary routine called by SSYTRF_ROOK. It uses blocked code (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
- Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular
N
N is INTEGER The order of the matrix A. N >= 0.
NB
NB is INTEGER The maximum number of columns of the matrix A that should be factored. NB should be at least 2 to allow for 2-by-2 pivot blocks.
KB
KB is INTEGER The number of columns of A that were actually factored. KB is either NB-1 or NB, or N if N <= NB.
A
A is REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D. If UPLO = 'U': Only the last KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k-1 and -IPIV(k-1) were inerchaged, D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L': Only the first KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k+1 and -IPIV(k+1) were inerchaged, D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is REAL array, dimension (LDW,NB)
LDW
LDW is INTEGER The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit > 0: if INFO = k, D(k,k) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester
Definition at line 182 of file slasyf_rook.f.
subroutine zlahef_rook (character uplo, integer n, integer nb, integer kb, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldw, * ) w, integer ldw, integer info)
Purpose:
ZLAHEF_ROOK computes a partial factorization of a complex Hermitian matrix A using the bounded Bunch-Kaufman ('rook') diagonal pivoting method. The partial factorization has the form: A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: ( 0 U22 ) ( 0 D ) ( U12**H U22**H ) A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L' ( L21 I ) ( 0 A22 ) ( 0 I ) where the order of D is at most NB. The actual order is returned in the argument KB, and is either NB or NB-1, or N if N <= NB. Note that U**H denotes the conjugate transpose of U. ZLAHEF_ROOK is an auxiliary routine called by ZHETRF_ROOK. It uses blocked code (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
- Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular
N
N is INTEGER The order of the matrix A. N >= 0.
NB
NB is INTEGER The maximum number of columns of the matrix A that should be factored. NB should be at least 2 to allow for 2-by-2 pivot blocks.
KB
KB is INTEGER The number of columns of A that were actually factored. KB is either NB-1 or NB, or N if N <= NB.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D. If UPLO = 'U': Only the last KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k-1 and -IPIV(k-1) were inerchaged, D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L': Only the first KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k+1 and -IPIV(k+1) were inerchaged, D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is COMPLEX*16 array, dimension (LDW,NB)
LDW
LDW is INTEGER The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit > 0: if INFO = k, D(k,k) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester
Definition at line 182 of file zlahef_rook.f.
subroutine zlasyf_rook (character uplo, integer n, integer nb, integer kb, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldw, * ) w, integer ldw, integer info)
ZLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
Purpose:
ZLASYF_ROOK computes a partial factorization of a complex symmetric matrix A using the bounded Bunch-Kaufman ('rook') diagonal pivoting method. The partial factorization has the form: A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' ( L21 I ) ( 0 A22 ) ( 0 I ) where the order of D is at most NB. The actual order is returned in the argument KB, and is either NB or NB-1, or N if N <= NB. ZLASYF_ROOK is an auxiliary routine called by ZSYTRF_ROOK. It uses blocked code (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
- Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular
N
N is INTEGER The order of the matrix A. N >= 0.
NB
NB is INTEGER The maximum number of columns of the matrix A that should be factored. NB should be at least 2 to allow for 2-by-2 pivot blocks.
KB
KB is INTEGER The number of columns of A that were actually factored. KB is either NB-1 or NB, or N if N <= NB.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D. If UPLO = 'U': Only the last KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k-1 and -IPIV(k-1) were inerchaged, D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L': Only the first KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k+1 and -IPIV(k+1) were inerchaged, D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is COMPLEX*16 array, dimension (LDW,NB)
LDW
LDW is INTEGER The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit > 0: if INFO = k, D(k,k) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester
Definition at line 182 of file zlasyf_rook.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.