lahef_rook - Man Page

la{he,sy}f_rook: triangular factor step

Synopsis

Functions

subroutine clahef_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

subroutine clasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
CLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
subroutine dlasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
DLASYF_ROOK *> DLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
subroutine slasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
SLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
subroutine zlahef_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

subroutine zlasyf_rook (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
ZLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.

Detailed Description

Function Documentation

subroutine clahef_rook (character uplo, integer n, integer nb, integer kb, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldw, * ) w, integer ldw, integer info)

Purpose:

 CLAHEF_ROOK computes a partial factorization of a complex Hermitian
 matrix A using the bounded Bunch-Kaufman ('rook') diagonal pivoting
 method. The partial factorization has the form:

 A  =  ( I  U12 ) ( A11  0  ) (  I      0     )  if UPLO = 'U', or:
       ( 0  U22 ) (  0   D  ) ( U12**H U22**H )

 A  =  ( L11  0 ) (  D   0  ) ( L11**H L21**H )  if UPLO = 'L'
       ( L21  I ) (  0  A22 ) (  0      I     )

 where the order of D is at most NB. The actual order is returned in
 the argument KB, and is either NB or NB-1, or N if N <= NB.
 Note that U**H denotes the conjugate transpose of U.

 CLAHEF_ROOK is an auxiliary routine called by CHETRF_ROOK. It uses
 blocked code (calling Level 3 BLAS) to update the submatrix
 A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NB

          NB is INTEGER
          The maximum number of columns of the matrix A that should be
          factored.  NB should be at least 2 to allow for 2-by-2 pivot
          blocks.

KB

          KB is INTEGER
          The number of columns of A that were actually factored.
          KB is either NB-1 or NB, or N if N <= NB.

A

          A is COMPLEX array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          n-by-n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n-by-n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, A contains details of the partial factorization.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.

          If UPLO = 'U':
             Only the last KB elements of IPIV are set.

             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
             interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k-1 and -IPIV(k-1) were inerchaged,
             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.

          If UPLO = 'L':
             Only the first KB elements of IPIV are set.

             If IPIV(k) > 0, then rows and columns k and IPIV(k)
             were interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k+1 and -IPIV(k+1) were inerchaged,
             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

W

          W is COMPLEX array, dimension (LDW,NB)

LDW

          LDW is INTEGER
          The leading dimension of the array W.  LDW >= max(1,N).

INFO

          INFO is INTEGER
          = 0: successful exit
          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

  November 2013, Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                  School of Mathematics,
                  University of Manchester

Definition at line 182 of file clahef_rook.f.

subroutine clasyf_rook (character uplo, integer n, integer nb, integer kb, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldw, * ) w, integer ldw, integer info)

CLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.  

Purpose:

 CLASYF_ROOK computes a partial factorization of a complex symmetric
 matrix A using the bounded Bunch-Kaufman ('rook') diagonal
 pivoting method. The partial factorization has the form:

 A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )

 A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
       ( L21  I ) (  0  A22 ) (  0       I    )

 where the order of D is at most NB. The actual order is returned in
 the argument KB, and is either NB or NB-1, or N if N <= NB.

 CLASYF_ROOK is an auxiliary routine called by CSYTRF_ROOK. It uses
 blocked code (calling Level 3 BLAS) to update the submatrix
 A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NB

          NB is INTEGER
          The maximum number of columns of the matrix A that should be
          factored.  NB should be at least 2 to allow for 2-by-2 pivot
          blocks.

KB

          KB is INTEGER
          The number of columns of A that were actually factored.
          KB is either NB-1 or NB, or N if N <= NB.

A

          A is COMPLEX array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          n-by-n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n-by-n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, A contains details of the partial factorization.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.

          If UPLO = 'U':
             Only the last KB elements of IPIV are set.

             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
             interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k-1 and -IPIV(k-1) were inerchaged,
             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.

          If UPLO = 'L':
             Only the first KB elements of IPIV are set.

             If IPIV(k) > 0, then rows and columns k and IPIV(k)
             were interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k+1 and -IPIV(k+1) were inerchaged,
             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

W

          W is COMPLEX array, dimension (LDW,NB)

LDW

          LDW is INTEGER
          The leading dimension of the array W.  LDW >= max(1,N).

INFO

          INFO is INTEGER
          = 0: successful exit
          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

  November 2013,     Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                  School of Mathematics,
                  University of Manchester

Definition at line 182 of file clasyf_rook.f.

subroutine dlasyf_rook (character uplo, integer n, integer nb, integer kb, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( ldw, * ) w, integer ldw, integer info)

DLASYF_ROOK *> DLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.  

Purpose:

 DLASYF_ROOK computes a partial factorization of a real symmetric
 matrix A using the bounded Bunch-Kaufman ('rook') diagonal
 pivoting method. The partial factorization has the form:

 A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )

 A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
       ( L21  I ) (  0  A22 ) (  0       I    )

 where the order of D is at most NB. The actual order is returned in
 the argument KB, and is either NB or NB-1, or N if N <= NB.

 DLASYF_ROOK is an auxiliary routine called by DSYTRF_ROOK. It uses
 blocked code (calling Level 3 BLAS) to update the submatrix
 A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NB

          NB is INTEGER
          The maximum number of columns of the matrix A that should be
          factored.  NB should be at least 2 to allow for 2-by-2 pivot
          blocks.

KB

          KB is INTEGER
          The number of columns of A that were actually factored.
          KB is either NB-1 or NB, or N if N <= NB.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          n-by-n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n-by-n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, A contains details of the partial factorization.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.

          If UPLO = 'U':
             Only the last KB elements of IPIV are set.

             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
             interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k-1 and -IPIV(k-1) were inerchaged,
             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.

          If UPLO = 'L':
             Only the first KB elements of IPIV are set.

             If IPIV(k) > 0, then rows and columns k and IPIV(k)
             were interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k+1 and -IPIV(k+1) were inerchaged,
             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

W

          W is DOUBLE PRECISION array, dimension (LDW,NB)

LDW

          LDW is INTEGER
          The leading dimension of the array W.  LDW >= max(1,N).

INFO

          INFO is INTEGER
          = 0: successful exit
          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

  November 2013,     Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                  School of Mathematics,
                  University of Manchester

Definition at line 182 of file dlasyf_rook.f.

subroutine slasyf_rook (character uplo, integer n, integer nb, integer kb, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( ldw, * ) w, integer ldw, integer info)

SLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.  

Purpose:

 SLASYF_ROOK computes a partial factorization of a real symmetric
 matrix A using the bounded Bunch-Kaufman ('rook') diagonal
 pivoting method. The partial factorization has the form:

 A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )

 A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
       ( L21  I ) (  0  A22 ) (  0       I    )

 where the order of D is at most NB. The actual order is returned in
 the argument KB, and is either NB or NB-1, or N if N <= NB.

 SLASYF_ROOK is an auxiliary routine called by SSYTRF_ROOK. It uses
 blocked code (calling Level 3 BLAS) to update the submatrix
 A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NB

          NB is INTEGER
          The maximum number of columns of the matrix A that should be
          factored.  NB should be at least 2 to allow for 2-by-2 pivot
          blocks.

KB

          KB is INTEGER
          The number of columns of A that were actually factored.
          KB is either NB-1 or NB, or N if N <= NB.

A

          A is REAL array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          n-by-n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n-by-n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, A contains details of the partial factorization.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.

          If UPLO = 'U':
             Only the last KB elements of IPIV are set.

             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
             interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k-1 and -IPIV(k-1) were inerchaged,
             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.

          If UPLO = 'L':
             Only the first KB elements of IPIV are set.

             If IPIV(k) > 0, then rows and columns k and IPIV(k)
             were interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k+1 and -IPIV(k+1) were inerchaged,
             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

W

          W is REAL array, dimension (LDW,NB)

LDW

          LDW is INTEGER
          The leading dimension of the array W.  LDW >= max(1,N).

INFO

          INFO is INTEGER
          = 0: successful exit
          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

  November 2013,     Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                  School of Mathematics,
                  University of Manchester

Definition at line 182 of file slasyf_rook.f.

subroutine zlahef_rook (character uplo, integer n, integer nb, integer kb, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldw, * ) w, integer ldw, integer info)

Purpose:

 ZLAHEF_ROOK computes a partial factorization of a complex Hermitian
 matrix A using the bounded Bunch-Kaufman ('rook') diagonal pivoting
 method. The partial factorization has the form:

 A  =  ( I  U12 ) ( A11  0  ) (  I      0     )  if UPLO = 'U', or:
       ( 0  U22 ) (  0   D  ) ( U12**H U22**H )

 A  =  ( L11  0 ) (  D   0  ) ( L11**H L21**H )  if UPLO = 'L'
       ( L21  I ) (  0  A22 ) (  0      I     )

 where the order of D is at most NB. The actual order is returned in
 the argument KB, and is either NB or NB-1, or N if N <= NB.
 Note that U**H denotes the conjugate transpose of U.

 ZLAHEF_ROOK is an auxiliary routine called by ZHETRF_ROOK. It uses
 blocked code (calling Level 3 BLAS) to update the submatrix
 A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NB

          NB is INTEGER
          The maximum number of columns of the matrix A that should be
          factored.  NB should be at least 2 to allow for 2-by-2 pivot
          blocks.

KB

          KB is INTEGER
          The number of columns of A that were actually factored.
          KB is either NB-1 or NB, or N if N <= NB.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          n-by-n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n-by-n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, A contains details of the partial factorization.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.

          If UPLO = 'U':
             Only the last KB elements of IPIV are set.

             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
             interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k-1 and -IPIV(k-1) were inerchaged,
             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.

          If UPLO = 'L':
             Only the first KB elements of IPIV are set.

             If IPIV(k) > 0, then rows and columns k and IPIV(k)
             were interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k+1 and -IPIV(k+1) were inerchaged,
             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

W

          W is COMPLEX*16 array, dimension (LDW,NB)

LDW

          LDW is INTEGER
          The leading dimension of the array W.  LDW >= max(1,N).

INFO

          INFO is INTEGER
          = 0: successful exit
          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

  November 2013,  Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                  School of Mathematics,
                  University of Manchester

Definition at line 182 of file zlahef_rook.f.

subroutine zlasyf_rook (character uplo, integer n, integer nb, integer kb, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldw, * ) w, integer ldw, integer info)

ZLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method.  

Purpose:

 ZLASYF_ROOK computes a partial factorization of a complex symmetric
 matrix A using the bounded Bunch-Kaufman ('rook') diagonal
 pivoting method. The partial factorization has the form:

 A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )

 A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
       ( L21  I ) (  0  A22 ) (  0       I    )

 where the order of D is at most NB. The actual order is returned in
 the argument KB, and is either NB or NB-1, or N if N <= NB.

 ZLASYF_ROOK is an auxiliary routine called by ZSYTRF_ROOK. It uses
 blocked code (calling Level 3 BLAS) to update the submatrix
 A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NB

          NB is INTEGER
          The maximum number of columns of the matrix A that should be
          factored.  NB should be at least 2 to allow for 2-by-2 pivot
          blocks.

KB

          KB is INTEGER
          The number of columns of A that were actually factored.
          KB is either NB-1 or NB, or N if N <= NB.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          n-by-n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n-by-n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, A contains details of the partial factorization.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.

          If UPLO = 'U':
             Only the last KB elements of IPIV are set.

             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
             interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k-1 and -IPIV(k-1) were inerchaged,
             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.

          If UPLO = 'L':
             Only the first KB elements of IPIV are set.

             If IPIV(k) > 0, then rows and columns k and IPIV(k)
             were interchanged and D(k,k) is a 1-by-1 diagonal block.

             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
             columns k and -IPIV(k) were interchanged and rows and
             columns k+1 and -IPIV(k+1) were inerchaged,
             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

W

          W is COMPLEX*16 array, dimension (LDW,NB)

LDW

          LDW is INTEGER
          The leading dimension of the array W.  LDW >= max(1,N).

INFO

          INFO is INTEGER
          = 0: successful exit
          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

  November 2013,  Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                  School of Mathematics,
                  University of Manchester

Definition at line 182 of file zlasyf_rook.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK