laed4 - Man Page
laed4: D&C step: secular equation nonlinear solver
Synopsis
Functions
subroutine dlaed4 (n, i, d, z, delta, rho, dlam, info)
DLAED4 used by DSTEDC. Finds a single root of the secular equation.
subroutine slaed4 (n, i, d, z, delta, rho, dlam, info)
SLAED4 used by SSTEDC. Finds a single root of the secular equation.
Detailed Description
Function Documentation
subroutine dlaed4 (integer n, integer i, double precision, dimension( * ) d, double precision, dimension( * ) z, double precision, dimension( * ) delta, double precision rho, double precision dlam, integer info)
DLAED4 used by DSTEDC. Finds a single root of the secular equation.
Purpose:
This subroutine computes the I-th updated eigenvalue of a symmetric rank-one modification to a diagonal matrix whose elements are given in the array d, and that D(i) < D(j) for i < j and that RHO > 0. This is arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus diag( D ) + RHO * Z * Z_transpose. where we assume the Euclidean norm of Z is 1. The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions.
- Parameters
N
N is INTEGER The length of all arrays.
I
I is INTEGER The index of the eigenvalue to be computed. 1 <= I <= N.
D
D is DOUBLE PRECISION array, dimension (N) The original eigenvalues. It is assumed that they are in order, D(I) < D(J) for I < J.
Z
Z is DOUBLE PRECISION array, dimension (N) The components of the updating vector.
DELTA
DELTA is DOUBLE PRECISION array, dimension (N) If N > 2, DELTA contains (D(j) - lambda_I) in its j-th component. If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5 for detail. The vector DELTA contains the information necessary to construct the eigenvectors by DLAED3 and DLAED9.
RHO
RHO is DOUBLE PRECISION The scalar in the symmetric updating formula.
DLAM
DLAM is DOUBLE PRECISION The computed lambda_I, the I-th updated eigenvalue.
INFO
INFO is INTEGER = 0: successful exit > 0: if INFO = 1, the updating process failed.
Internal Parameters:
Logical variable ORGATI (origin-at-i?) is used for distinguishing whether D(i) or D(i+1) is treated as the origin. ORGATI = .true. origin at i ORGATI = .false. origin at i+1 Logical variable SWTCH3 (switch-for-3-poles?) is for noting if we are working with THREE poles! MAXIT is the maximum number of iterations allowed for each eigenvalue.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
Definition at line 144 of file dlaed4.f.
subroutine slaed4 (integer n, integer i, real, dimension( * ) d, real, dimension( * ) z, real, dimension( * ) delta, real rho, real dlam, integer info)
SLAED4 used by SSTEDC. Finds a single root of the secular equation.
Purpose:
This subroutine computes the I-th updated eigenvalue of a symmetric rank-one modification to a diagonal matrix whose elements are given in the array d, and that D(i) < D(j) for i < j and that RHO > 0. This is arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus diag( D ) + RHO * Z * Z_transpose. where we assume the Euclidean norm of Z is 1. The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions.
- Parameters
N
N is INTEGER The length of all arrays.
I
I is INTEGER The index of the eigenvalue to be computed. 1 <= I <= N.
D
D is REAL array, dimension (N) The original eigenvalues. It is assumed that they are in order, D(I) < D(J) for I < J.
Z
Z is REAL array, dimension (N) The components of the updating vector.
DELTA
DELTA is REAL array, dimension (N) If N > 2, DELTA contains (D(j) - lambda_I) in its j-th component. If N = 1, then DELTA(1) = 1. If N = 2, see SLAED5 for detail. The vector DELTA contains the information necessary to construct the eigenvectors by SLAED3 and SLAED9.
RHO
RHO is REAL The scalar in the symmetric updating formula.
DLAM
DLAM is REAL The computed lambda_I, the I-th updated eigenvalue.
INFO
INFO is INTEGER = 0: successful exit > 0: if INFO = 1, the updating process failed.
Internal Parameters:
Logical variable ORGATI (origin-at-i?) is used for distinguishing whether D(i) or D(i+1) is treated as the origin. ORGATI = .true. origin at i ORGATI = .false. origin at i+1 Logical variable SWTCH3 (switch-for-3-poles?) is for noting if we are working with THREE poles! MAXIT is the maximum number of iterations allowed for each eigenvalue.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
Definition at line 144 of file slaed4.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.