labrd - Man Page
labrd: step in gebrd
Synopsis
Functions
subroutine clabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
CLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
subroutine dlabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
DLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
subroutine slabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
SLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
subroutine zlabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
ZLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
Detailed Description
Function Documentation
subroutine clabrd (integer m, integer n, integer nb, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) d, real, dimension( * ) e, complex, dimension( * ) tauq, complex, dimension( * ) taup, complex, dimension( ldx, * ) x, integer ldx, complex, dimension( ldy, * ) y, integer ldy)
CLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
Purpose:
CLABRD reduces the first NB rows and columns of a complex general m by n matrix A to upper or lower real bidiagonal form by a unitary transformation Q**H * A * P, and returns the matrices X and Y which are needed to apply the transformation to the unreduced part of A. If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower bidiagonal form. This is an auxiliary routine called by CGEBRD
- Parameters
M
M is INTEGER The number of rows in the matrix A.
N
N is INTEGER The number of columns in the matrix A.
NB
NB is INTEGER The number of leading rows and columns of A to be reduced.
A
A is COMPLEX array, dimension (LDA,N) On entry, the m by n general matrix to be reduced. On exit, the first NB rows and columns of the matrix are overwritten; the rest of the array is unchanged. If m >= n, elements on and below the diagonal in the first NB columns, with the array TAUQ, represent the unitary matrix Q as a product of elementary reflectors; and elements above the diagonal in the first NB rows, with the array TAUP, represent the unitary matrix P as a product of elementary reflectors. If m < n, elements below the diagonal in the first NB columns, with the array TAUQ, represent the unitary matrix Q as a product of elementary reflectors, and elements on and above the diagonal in the first NB rows, with the array TAUP, represent the unitary matrix P as a product of elementary reflectors. See Further Details.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
D
D is REAL array, dimension (NB) The diagonal elements of the first NB rows and columns of the reduced matrix. D(i) = A(i,i).
E
E is REAL array, dimension (NB) The off-diagonal elements of the first NB rows and columns of the reduced matrix.
TAUQ
TAUQ is COMPLEX array, dimension (NB) The scalar factors of the elementary reflectors which represent the unitary matrix Q. See Further Details.
TAUP
TAUP is COMPLEX array, dimension (NB) The scalar factors of the elementary reflectors which represent the unitary matrix P. See Further Details.
X
X is COMPLEX array, dimension (LDX,NB) The m-by-nb matrix X required to update the unreduced part of A.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,M).
Y
Y is COMPLEX array, dimension (LDY,NB) The n-by-nb matrix Y required to update the unreduced part of A.
LDY
LDY is INTEGER The leading dimension of the array Y. LDY >= max(1,N).
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrices Q and P are represented as products of elementary reflectors: Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H where tauq and taup are complex scalars, and v and u are complex vectors. If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). The elements of the vectors v and u together form the m-by-nb matrix V and the nb-by-n matrix U**H which are needed, with X and Y, to apply the transformation to the unreduced part of the matrix, using a block update of the form: A := A - V*Y**H - X*U**H. The contents of A on exit are illustrated by the following examples with nb = 2: m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) ( v1 v2 a a a ) ( v1 1 a a a a ) ( v1 v2 a a a ) ( v1 v2 a a a a ) ( v1 v2 a a a ) ( v1 v2 a a a a ) ( v1 v2 a a a ) where a denotes an element of the original matrix which is unchanged, vi denotes an element of the vector defining H(i), and ui an element of the vector defining G(i).
Definition at line 210 of file clabrd.f.
subroutine dlabrd (integer m, integer n, integer nb, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( * ) tauq, double precision, dimension( * ) taup, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( ldy, * ) y, integer ldy)
DLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
Purpose:
DLABRD reduces the first NB rows and columns of a real general m by n matrix A to upper or lower bidiagonal form by an orthogonal transformation Q**T * A * P, and returns the matrices X and Y which are needed to apply the transformation to the unreduced part of A. If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower bidiagonal form. This is an auxiliary routine called by DGEBRD
- Parameters
M
M is INTEGER The number of rows in the matrix A.
N
N is INTEGER The number of columns in the matrix A.
NB
NB is INTEGER The number of leading rows and columns of A to be reduced.
A
A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the m by n general matrix to be reduced. On exit, the first NB rows and columns of the matrix are overwritten; the rest of the array is unchanged. If m >= n, elements on and below the diagonal in the first NB columns, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors; and elements above the diagonal in the first NB rows, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors. If m < n, elements below the diagonal in the first NB columns, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors, and elements on and above the diagonal in the first NB rows, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors. See Further Details.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
D
D is DOUBLE PRECISION array, dimension (NB) The diagonal elements of the first NB rows and columns of the reduced matrix. D(i) = A(i,i).
E
E is DOUBLE PRECISION array, dimension (NB) The off-diagonal elements of the first NB rows and columns of the reduced matrix.
TAUQ
TAUQ is DOUBLE PRECISION array, dimension (NB) The scalar factors of the elementary reflectors which represent the orthogonal matrix Q. See Further Details.
TAUP
TAUP is DOUBLE PRECISION array, dimension (NB) The scalar factors of the elementary reflectors which represent the orthogonal matrix P. See Further Details.
X
X is DOUBLE PRECISION array, dimension (LDX,NB) The m-by-nb matrix X required to update the unreduced part of A.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,M).
Y
Y is DOUBLE PRECISION array, dimension (LDY,NB) The n-by-nb matrix Y required to update the unreduced part of A.
LDY
LDY is INTEGER The leading dimension of the array Y. LDY >= max(1,N).
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrices Q and P are represented as products of elementary reflectors: Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T where tauq and taup are real scalars, and v and u are real vectors. If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). The elements of the vectors v and u together form the m-by-nb matrix V and the nb-by-n matrix U**T which are needed, with X and Y, to apply the transformation to the unreduced part of the matrix, using a block update of the form: A := A - V*Y**T - X*U**T. The contents of A on exit are illustrated by the following examples with nb = 2: m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) ( v1 v2 a a a ) ( v1 1 a a a a ) ( v1 v2 a a a ) ( v1 v2 a a a a ) ( v1 v2 a a a ) ( v1 v2 a a a a ) ( v1 v2 a a a ) where a denotes an element of the original matrix which is unchanged, vi denotes an element of the vector defining H(i), and ui an element of the vector defining G(i).
Definition at line 208 of file dlabrd.f.
subroutine slabrd (integer m, integer n, integer nb, real, dimension( lda, * ) a, integer lda, real, dimension( * ) d, real, dimension( * ) e, real, dimension( * ) tauq, real, dimension( * ) taup, real, dimension( ldx, * ) x, integer ldx, real, dimension( ldy, * ) y, integer ldy)
SLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
Purpose:
SLABRD reduces the first NB rows and columns of a real general m by n matrix A to upper or lower bidiagonal form by an orthogonal transformation Q**T * A * P, and returns the matrices X and Y which are needed to apply the transformation to the unreduced part of A. If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower bidiagonal form. This is an auxiliary routine called by SGEBRD
- Parameters
M
M is INTEGER The number of rows in the matrix A.
N
N is INTEGER The number of columns in the matrix A.
NB
NB is INTEGER The number of leading rows and columns of A to be reduced.
A
A is REAL array, dimension (LDA,N) On entry, the m by n general matrix to be reduced. On exit, the first NB rows and columns of the matrix are overwritten; the rest of the array is unchanged. If m >= n, elements on and below the diagonal in the first NB columns, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors; and elements above the diagonal in the first NB rows, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors. If m < n, elements below the diagonal in the first NB columns, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors, and elements on and above the diagonal in the first NB rows, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors. See Further Details.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
D
D is REAL array, dimension (NB) The diagonal elements of the first NB rows and columns of the reduced matrix. D(i) = A(i,i).
E
E is REAL array, dimension (NB) The off-diagonal elements of the first NB rows and columns of the reduced matrix.
TAUQ
TAUQ is REAL array, dimension (NB) The scalar factors of the elementary reflectors which represent the orthogonal matrix Q. See Further Details.
TAUP
TAUP is REAL array, dimension (NB) The scalar factors of the elementary reflectors which represent the orthogonal matrix P. See Further Details.
X
X is REAL array, dimension (LDX,NB) The m-by-nb matrix X required to update the unreduced part of A.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,M).
Y
Y is REAL array, dimension (LDY,NB) The n-by-nb matrix Y required to update the unreduced part of A.
LDY
LDY is INTEGER The leading dimension of the array Y. LDY >= max(1,N).
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrices Q and P are represented as products of elementary reflectors: Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T where tauq and taup are real scalars, and v and u are real vectors. If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). The elements of the vectors v and u together form the m-by-nb matrix V and the nb-by-n matrix U**T which are needed, with X and Y, to apply the transformation to the unreduced part of the matrix, using a block update of the form: A := A - V*Y**T - X*U**T. The contents of A on exit are illustrated by the following examples with nb = 2: m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) ( v1 v2 a a a ) ( v1 1 a a a a ) ( v1 v2 a a a ) ( v1 v2 a a a a ) ( v1 v2 a a a ) ( v1 v2 a a a a ) ( v1 v2 a a a ) where a denotes an element of the original matrix which is unchanged, vi denotes an element of the vector defining H(i), and ui an element of the vector defining G(i).
Definition at line 208 of file slabrd.f.
subroutine zlabrd (integer m, integer n, integer nb, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) d, double precision, dimension( * ) e, complex*16, dimension( * ) tauq, complex*16, dimension( * ) taup, complex*16, dimension( ldx, * ) x, integer ldx, complex*16, dimension( ldy, * ) y, integer ldy)
ZLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
Purpose:
ZLABRD reduces the first NB rows and columns of a complex general m by n matrix A to upper or lower real bidiagonal form by a unitary transformation Q**H * A * P, and returns the matrices X and Y which are needed to apply the transformation to the unreduced part of A. If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower bidiagonal form. This is an auxiliary routine called by ZGEBRD
- Parameters
M
M is INTEGER The number of rows in the matrix A.
N
N is INTEGER The number of columns in the matrix A.
NB
NB is INTEGER The number of leading rows and columns of A to be reduced.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the m by n general matrix to be reduced. On exit, the first NB rows and columns of the matrix are overwritten; the rest of the array is unchanged. If m >= n, elements on and below the diagonal in the first NB columns, with the array TAUQ, represent the unitary matrix Q as a product of elementary reflectors; and elements above the diagonal in the first NB rows, with the array TAUP, represent the unitary matrix P as a product of elementary reflectors. If m < n, elements below the diagonal in the first NB columns, with the array TAUQ, represent the unitary matrix Q as a product of elementary reflectors, and elements on and above the diagonal in the first NB rows, with the array TAUP, represent the unitary matrix P as a product of elementary reflectors. See Further Details.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
D
D is DOUBLE PRECISION array, dimension (NB) The diagonal elements of the first NB rows and columns of the reduced matrix. D(i) = A(i,i).
E
E is DOUBLE PRECISION array, dimension (NB) The off-diagonal elements of the first NB rows and columns of the reduced matrix.
TAUQ
TAUQ is COMPLEX*16 array, dimension (NB) The scalar factors of the elementary reflectors which represent the unitary matrix Q. See Further Details.
TAUP
TAUP is COMPLEX*16 array, dimension (NB) The scalar factors of the elementary reflectors which represent the unitary matrix P. See Further Details.
X
X is COMPLEX*16 array, dimension (LDX,NB) The m-by-nb matrix X required to update the unreduced part of A.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,M).
Y
Y is COMPLEX*16 array, dimension (LDY,NB) The n-by-nb matrix Y required to update the unreduced part of A.
LDY
LDY is INTEGER The leading dimension of the array Y. LDY >= max(1,N).
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrices Q and P are represented as products of elementary reflectors: Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H where tauq and taup are complex scalars, and v and u are complex vectors. If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). The elements of the vectors v and u together form the m-by-nb matrix V and the nb-by-n matrix U**H which are needed, with X and Y, to apply the transformation to the unreduced part of the matrix, using a block update of the form: A := A - V*Y**H - X*U**H. The contents of A on exit are illustrated by the following examples with nb = 2: m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) ( v1 v2 a a a ) ( v1 1 a a a a ) ( v1 v2 a a a ) ( v1 v2 a a a a ) ( v1 v2 a a a ) ( v1 v2 a a a a ) ( v1 v2 a a a ) where a denotes an element of the original matrix which is unchanged, vi denotes an element of the vector defining H(i), and ui an element of the vector defining G(i).
Definition at line 210 of file zlabrd.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.