la_herfsx_extended - Man Page
la_herfsx_extended: step in herfsx
Synopsis
Functions
subroutine cla_herfsx_extended (prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
CLA_HERFSX_EXTENDED improves the computed solution to a system of linear equations for Hermitian indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
subroutine cla_syrfsx_extended (prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
CLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
subroutine dla_syrfsx_extended (prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
DLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
subroutine sla_syrfsx_extended (prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
SLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
subroutine zla_herfsx_extended (prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
ZLA_HERFSX_EXTENDED improves the computed solution to a system of linear equations for Hermitian indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
subroutine zla_syrfsx_extended (prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
ZLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
Detailed Description
Function Documentation
subroutine cla_herfsx_extended (integer prec_type, character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, logical colequ, real, dimension( * ) c, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldy, * ) y, integer ldy, real, dimension( * ) berr_out, integer n_norms, real, dimension( nrhs, * ) err_bnds_norm, real, dimension( nrhs, * ) err_bnds_comp, complex, dimension( * ) res, real, dimension( * ) ayb, complex, dimension( * ) dy, complex, dimension( * ) y_tail, real rcond, integer ithresh, real rthresh, real dz_ub, logical ignore_cwise, integer info)
CLA_HERFSX_EXTENDED improves the computed solution to a system of linear equations for Hermitian indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
Purpose:
CLA_HERFSX_EXTENDED improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. This subroutine is called by CHERFSX to perform iterative refinement. In addition to normwise error bound, the code provides maximum componentwise error bound if possible. See comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds. Note that this subroutine is only responsible for setting the second fields of ERR_BNDS_NORM and ERR_BNDS_COMP.
- Parameters
PREC_TYPE
PREC_TYPE is INTEGER Specifies the intermediate precision to be used in refinement. The value is defined by ILAPREC(P) where P is a CHARACTER and P = 'S': Single = 'D': Double = 'I': Indigenous = 'X' or 'E': Extra
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right-hand-sides, i.e., the number of columns of the matrix B.
A
A is COMPLEX array, dimension (LDA,N) On entry, the N-by-N matrix A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CHETRF.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CHETRF.
COLEQU
COLEQU is LOGICAL If .TRUE. then column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly.
C
C is REAL array, dimension (N) The column scale factors for A. If COLEQU = .FALSE., C is not accessed. If C is input, each element of C should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
B
B is COMPLEX array, dimension (LDB,NRHS) The right-hand-side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Y
Y is COMPLEX array, dimension (LDY,NRHS) On entry, the solution matrix X, as computed by CHETRS. On exit, the improved solution matrix Y.
LDY
LDY is INTEGER The leading dimension of the array Y. LDY >= max(1,N).
BERR_OUT
BERR_OUT is REAL array, dimension (NRHS) On exit, BERR_OUT(j) contains the componentwise relative backward error for right-hand-side j from the formula max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) where abs(Z) is the componentwise absolute value of the matrix or vector Z. This is computed by CLA_LIN_BERR.
N_NORMS
N_NORMS is INTEGER Determines which error bounds to return (see ERR_BNDS_NORM and ERR_BNDS_COMP). If N_NORMS >= 1 return normwise error bounds. If N_NORMS >= 2 return componentwise error bounds.
ERR_BNDS_NORM
ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS) For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the ith solution vector: max_j (abs(XTRUE(j,i) - X(j,i))) ------------------------------ max_j abs(X(j,i)) The array is indexed by the type of error information as described below. There currently are up to three pieces of information returned. The first index in ERR_BNDS_NORM(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_NORM(:,err) contains the following three fields: err = 1 'Trust/don't trust' boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 'Guaranteed' error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated normwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is 'guaranteed'. These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*A, where S scales each row by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions.
ERR_BNDS_COMP
ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS) For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows: Componentwise relative error in the ith solution vector: abs(XTRUE(j,i) - X(j,i)) max_j ---------------------- abs(X(j,i)) The array is indexed by the right-hand side i (on which the componentwise relative error depends), and the type of error information as described below. There currently are up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (PARAMS(3) = 0.0), then ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most the first (:,N_ERR_BNDS) entries are returned. The first index in ERR_BNDS_COMP(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_COMP(:,err) contains the following three fields: err = 1 'Trust/don't trust' boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 'Guaranteed' error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated componentwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is 'guaranteed'. These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*(A*diag(x)), where x is the solution for the current right-hand side and S scales each row of A*diag(x) by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions.
RES
RES is COMPLEX array, dimension (N) Workspace to hold the intermediate residual.
AYB
AYB is REAL array, dimension (N) Workspace.
DY
DY is COMPLEX array, dimension (N) Workspace to hold the intermediate solution.
Y_TAIL
Y_TAIL is COMPLEX array, dimension (N) Workspace to hold the trailing bits of the intermediate solution.
RCOND
RCOND is REAL Reciprocal scaled condition number. This is an estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If this is less than the machine precision (in particular, if it is zero), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill- conditioned.
ITHRESH
ITHRESH is INTEGER The maximum number of residual computations allowed for refinement. The default is 10. For 'aggressive' set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
RTHRESH
RTHRESH is REAL Determines when to stop refinement if the error estimate stops decreasing. Refinement will stop when the next solution no longer satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The default value is 0.5. For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices. See LAWN 165 for more details.
DZ_UB
DZ_UB is REAL Determines when to start considering componentwise convergence. Componentwise convergence is only considered after each component of the solution Y is stable, which we define as the relative change in each component being less than DZ_UB. The default value is 0.25, requiring the first bit to be stable. See LAWN 165 for more details.
IGNORE_CWISE
IGNORE_CWISE is LOGICAL If .TRUE. then ignore componentwise convergence. Default value is .FALSE..
INFO
INFO is INTEGER = 0: Successful exit. < 0: if INFO = -i, the ith argument to CLA_HERFSX_EXTENDED had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 388 of file cla_herfsx_extended.f.
subroutine cla_syrfsx_extended (integer prec_type, character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, logical colequ, real, dimension( * ) c, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldy, * ) y, integer ldy, real, dimension( * ) berr_out, integer n_norms, real, dimension( nrhs, * ) err_bnds_norm, real, dimension( nrhs, * ) err_bnds_comp, complex, dimension( * ) res, real, dimension( * ) ayb, complex, dimension( * ) dy, complex, dimension( * ) y_tail, real rcond, integer ithresh, real rthresh, real dz_ub, logical ignore_cwise, integer info)
CLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
Purpose:
CLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. This subroutine is called by CSYRFSX to perform iterative refinement. In addition to normwise error bound, the code provides maximum componentwise error bound if possible. See comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds. Note that this subroutine is only responsible for setting the second fields of ERR_BNDS_NORM and ERR_BNDS_COMP.
- Parameters
PREC_TYPE
PREC_TYPE is INTEGER Specifies the intermediate precision to be used in refinement. The value is defined by ILAPREC(P) where P is a CHARACTER and P = 'S': Single = 'D': Double = 'I': Indigenous = 'X' or 'E': Extra
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right-hand-sides, i.e., the number of columns of the matrix B.
A
A is COMPLEX array, dimension (LDA,N) On entry, the N-by-N matrix A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CSYTRF.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CSYTRF.
COLEQU
COLEQU is LOGICAL If .TRUE. then column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly.
C
C is REAL array, dimension (N) The column scale factors for A. If COLEQU = .FALSE., C is not accessed. If C is input, each element of C should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
B
B is COMPLEX array, dimension (LDB,NRHS) The right-hand-side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Y
Y is COMPLEX array, dimension (LDY,NRHS) On entry, the solution matrix X, as computed by CSYTRS. On exit, the improved solution matrix Y.
LDY
LDY is INTEGER The leading dimension of the array Y. LDY >= max(1,N).
BERR_OUT
BERR_OUT is REAL array, dimension (NRHS) On exit, BERR_OUT(j) contains the componentwise relative backward error for right-hand-side j from the formula max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) where abs(Z) is the componentwise absolute value of the matrix or vector Z. This is computed by CLA_LIN_BERR.
N_NORMS
N_NORMS is INTEGER Determines which error bounds to return (see ERR_BNDS_NORM and ERR_BNDS_COMP). If N_NORMS >= 1 return normwise error bounds. If N_NORMS >= 2 return componentwise error bounds.
ERR_BNDS_NORM
ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS) For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the ith solution vector: max_j (abs(XTRUE(j,i) - X(j,i))) ------------------------------ max_j abs(X(j,i)) The array is indexed by the type of error information as described below. There currently are up to three pieces of information returned. The first index in ERR_BNDS_NORM(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_NORM(:,err) contains the following three fields: err = 1 'Trust/don't trust' boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 'Guaranteed' error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated normwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is 'guaranteed'. These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*A, where S scales each row by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions.
ERR_BNDS_COMP
ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS) For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows: Componentwise relative error in the ith solution vector: abs(XTRUE(j,i) - X(j,i)) max_j ---------------------- abs(X(j,i)) The array is indexed by the right-hand side i (on which the componentwise relative error depends), and the type of error information as described below. There currently are up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (PARAMS(3) = 0.0), then ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most the first (:,N_ERR_BNDS) entries are returned. The first index in ERR_BNDS_COMP(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_COMP(:,err) contains the following three fields: err = 1 'Trust/don't trust' boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 'Guaranteed' error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated componentwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is 'guaranteed'. These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*(A*diag(x)), where x is the solution for the current right-hand side and S scales each row of A*diag(x) by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions.
RES
RES is COMPLEX array, dimension (N) Workspace to hold the intermediate residual.
AYB
AYB is REAL array, dimension (N) Workspace.
DY
DY is COMPLEX array, dimension (N) Workspace to hold the intermediate solution.
Y_TAIL
Y_TAIL is COMPLEX array, dimension (N) Workspace to hold the trailing bits of the intermediate solution.
RCOND
RCOND is REAL Reciprocal scaled condition number. This is an estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If this is less than the machine precision (in particular, if it is zero), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill- conditioned.
ITHRESH
ITHRESH is INTEGER The maximum number of residual computations allowed for refinement. The default is 10. For 'aggressive' set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
RTHRESH
RTHRESH is REAL Determines when to stop refinement if the error estimate stops decreasing. Refinement will stop when the next solution no longer satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The default value is 0.5. For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices. See LAWN 165 for more details.
DZ_UB
DZ_UB is REAL Determines when to start considering componentwise convergence. Componentwise convergence is only considered after each component of the solution Y is stable, which we define as the relative change in each component being less than DZ_UB. The default value is 0.25, requiring the first bit to be stable. See LAWN 165 for more details.
IGNORE_CWISE
IGNORE_CWISE is LOGICAL If .TRUE. then ignore componentwise convergence. Default value is .FALSE..
INFO
INFO is INTEGER = 0: Successful exit. < 0: if INFO = -i, the ith argument to CLA_SYRFSX_EXTENDED had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 388 of file cla_syrfsx_extended.f.
subroutine dla_syrfsx_extended (integer prec_type, character uplo, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, logical colequ, double precision, dimension( * ) c, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldy, * ) y, integer ldy, double precision, dimension( * ) berr_out, integer n_norms, double precision, dimension( nrhs, * ) err_bnds_norm, double precision, dimension( nrhs, * ) err_bnds_comp, double precision, dimension( * ) res, double precision, dimension( * ) ayb, double precision, dimension( * ) dy, double precision, dimension( * ) y_tail, double precision rcond, integer ithresh, double precision rthresh, double precision dz_ub, logical ignore_cwise, integer info)
DLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
Purpose:
DLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. This subroutine is called by DSYRFSX to perform iterative refinement. In addition to normwise error bound, the code provides maximum componentwise error bound if possible. See comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds. Note that this subroutine is only responsible for setting the second fields of ERR_BNDS_NORM and ERR_BNDS_COMP.
- Parameters
PREC_TYPE
PREC_TYPE is INTEGER Specifies the intermediate precision to be used in refinement. The value is defined by ILAPREC(P) where P is a CHARACTER and P = 'S': Single = 'D': Double = 'I': Indigenous = 'X' or 'E': Extra
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right-hand-sides, i.e., the number of columns of the matrix B.
A
A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N matrix A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is DOUBLE PRECISION array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by DSYTRF.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by DSYTRF.
COLEQU
COLEQU is LOGICAL If .TRUE. then column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly.
C
C is DOUBLE PRECISION array, dimension (N) The column scale factors for A. If COLEQU = .FALSE., C is not accessed. If C is input, each element of C should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS) The right-hand-side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Y
Y is DOUBLE PRECISION array, dimension (LDY,NRHS) On entry, the solution matrix X, as computed by DSYTRS. On exit, the improved solution matrix Y.
LDY
LDY is INTEGER The leading dimension of the array Y. LDY >= max(1,N).
BERR_OUT
BERR_OUT is DOUBLE PRECISION array, dimension (NRHS) On exit, BERR_OUT(j) contains the componentwise relative backward error for right-hand-side j from the formula max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) where abs(Z) is the componentwise absolute value of the matrix or vector Z. This is computed by DLA_LIN_BERR.
N_NORMS
N_NORMS is INTEGER Determines which error bounds to return (see ERR_BNDS_NORM and ERR_BNDS_COMP). If N_NORMS >= 1 return normwise error bounds. If N_NORMS >= 2 return componentwise error bounds.
ERR_BNDS_NORM
ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the ith solution vector: max_j (abs(XTRUE(j,i) - X(j,i))) ------------------------------ max_j abs(X(j,i)) The array is indexed by the type of error information as described below. There currently are up to three pieces of information returned. The first index in ERR_BNDS_NORM(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_NORM(:,err) contains the following three fields: err = 1 'Trust/don't trust' boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 'Guaranteed' error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated normwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is 'guaranteed'. These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*A, where S scales each row by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions.
ERR_BNDS_COMP
ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows: Componentwise relative error in the ith solution vector: abs(XTRUE(j,i) - X(j,i)) max_j ---------------------- abs(X(j,i)) The array is indexed by the right-hand side i (on which the componentwise relative error depends), and the type of error information as described below. There currently are up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (PARAMS(3) = 0.0), then ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most the first (:,N_ERR_BNDS) entries are returned. The first index in ERR_BNDS_COMP(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_COMP(:,err) contains the following three fields: err = 1 'Trust/don't trust' boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 'Guaranteed' error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated componentwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is 'guaranteed'. These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*(A*diag(x)), where x is the solution for the current right-hand side and S scales each row of A*diag(x) by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions.
RES
RES is DOUBLE PRECISION array, dimension (N) Workspace to hold the intermediate residual.
AYB
AYB is DOUBLE PRECISION array, dimension (N) Workspace. This can be the same workspace passed for Y_TAIL.
DY
DY is DOUBLE PRECISION array, dimension (N) Workspace to hold the intermediate solution.
Y_TAIL
Y_TAIL is DOUBLE PRECISION array, dimension (N) Workspace to hold the trailing bits of the intermediate solution.
RCOND
RCOND is DOUBLE PRECISION Reciprocal scaled condition number. This is an estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If this is less than the machine precision (in particular, if it is zero), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill- conditioned.
ITHRESH
ITHRESH is INTEGER The maximum number of residual computations allowed for refinement. The default is 10. For 'aggressive' set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
RTHRESH
RTHRESH is DOUBLE PRECISION Determines when to stop refinement if the error estimate stops decreasing. Refinement will stop when the next solution no longer satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The default value is 0.5. For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices. See LAWN 165 for more details.
DZ_UB
DZ_UB is DOUBLE PRECISION Determines when to start considering componentwise convergence. Componentwise convergence is only considered after each component of the solution Y is stable, which we define as the relative change in each component being less than DZ_UB. The default value is 0.25, requiring the first bit to be stable. See LAWN 165 for more details.
IGNORE_CWISE
IGNORE_CWISE is LOGICAL If .TRUE. then ignore componentwise convergence. Default value is .FALSE..
INFO
INFO is INTEGER = 0: Successful exit. < 0: if INFO = -i, the ith argument to DLA_SYRFSX_EXTENDED had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 389 of file dla_syrfsx_extended.f.
subroutine sla_syrfsx_extended (integer prec_type, character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, logical colequ, real, dimension( * ) c, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldy, * ) y, integer ldy, real, dimension( * ) berr_out, integer n_norms, real, dimension( nrhs, * ) err_bnds_norm, real, dimension( nrhs, * ) err_bnds_comp, real, dimension( * ) res, real, dimension( * ) ayb, real, dimension( * ) dy, real, dimension( * ) y_tail, real rcond, integer ithresh, real rthresh, real dz_ub, logical ignore_cwise, integer info)
SLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
Purpose:
SLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. This subroutine is called by SSYRFSX to perform iterative refinement. In addition to normwise error bound, the code provides maximum componentwise error bound if possible. See comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds. Note that this subroutine is only responsible for setting the second fields of ERR_BNDS_NORM and ERR_BNDS_COMP.
- Parameters
PREC_TYPE
PREC_TYPE is INTEGER Specifies the intermediate precision to be used in refinement. The value is defined by ILAPREC(P) where P is a CHARACTER and P = 'S': Single = 'D': Double = 'I': Indigenous = 'X' or 'E': Extra
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right-hand-sides, i.e., the number of columns of the matrix B.
A
A is REAL array, dimension (LDA,N) On entry, the N-by-N matrix A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is REAL array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by SSYTRF.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by SSYTRF.
COLEQU
COLEQU is LOGICAL If .TRUE. then column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly.
C
C is REAL array, dimension (N) The column scale factors for A. If COLEQU = .FALSE., C is not accessed. If C is input, each element of C should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
B
B is REAL array, dimension (LDB,NRHS) The right-hand-side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Y
Y is REAL array, dimension (LDY,NRHS) On entry, the solution matrix X, as computed by SSYTRS. On exit, the improved solution matrix Y.
LDY
LDY is INTEGER The leading dimension of the array Y. LDY >= max(1,N).
BERR_OUT
BERR_OUT is REAL array, dimension (NRHS) On exit, BERR_OUT(j) contains the componentwise relative backward error for right-hand-side j from the formula max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) where abs(Z) is the componentwise absolute value of the matrix or vector Z. This is computed by SLA_LIN_BERR.
N_NORMS
N_NORMS is INTEGER Determines which error bounds to return (see ERR_BNDS_NORM and ERR_BNDS_COMP). If N_NORMS >= 1 return normwise error bounds. If N_NORMS >= 2 return componentwise error bounds.
ERR_BNDS_NORM
ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS) For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the ith solution vector: max_j (abs(XTRUE(j,i) - X(j,i))) ------------------------------ max_j abs(X(j,i)) The array is indexed by the type of error information as described below. There currently are up to three pieces of information returned. The first index in ERR_BNDS_NORM(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_NORM(:,err) contains the following three fields: err = 1 'Trust/don't trust' boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 'Guaranteed' error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated normwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is 'guaranteed'. These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*A, where S scales each row by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions.
ERR_BNDS_COMP
ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS) For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows: Componentwise relative error in the ith solution vector: abs(XTRUE(j,i) - X(j,i)) max_j ---------------------- abs(X(j,i)) The array is indexed by the right-hand side i (on which the componentwise relative error depends), and the type of error information as described below. There currently are up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (PARAMS(3) = 0.0), then ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most the first (:,N_ERR_BNDS) entries are returned. The first index in ERR_BNDS_COMP(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_COMP(:,err) contains the following three fields: err = 1 'Trust/don't trust' boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 'Guaranteed' error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated componentwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is 'guaranteed'. These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*(A*diag(x)), where x is the solution for the current right-hand side and S scales each row of A*diag(x) by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions.
RES
RES is REAL array, dimension (N) Workspace to hold the intermediate residual.
AYB
AYB is REAL array, dimension (N) Workspace. This can be the same workspace passed for Y_TAIL.
DY
DY is REAL array, dimension (N) Workspace to hold the intermediate solution.
Y_TAIL
Y_TAIL is REAL array, dimension (N) Workspace to hold the trailing bits of the intermediate solution.
RCOND
RCOND is REAL Reciprocal scaled condition number. This is an estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If this is less than the machine precision (in particular, if it is zero), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill- conditioned.
ITHRESH
ITHRESH is INTEGER The maximum number of residual computations allowed for refinement. The default is 10. For 'aggressive' set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
RTHRESH
RTHRESH is REAL Determines when to stop refinement if the error estimate stops decreasing. Refinement will stop when the next solution no longer satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The default value is 0.5. For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices. See LAWN 165 for more details.
DZ_UB
DZ_UB is REAL Determines when to start considering componentwise convergence. Componentwise convergence is only considered after each component of the solution Y is stable, which we define as the relative change in each component being less than DZ_UB. The default value is 0.25, requiring the first bit to be stable. See LAWN 165 for more details.
IGNORE_CWISE
IGNORE_CWISE is LOGICAL If .TRUE. then ignore componentwise convergence. Default value is .FALSE..
INFO
INFO is INTEGER = 0: Successful exit. < 0: if INFO = -i, the ith argument to SLA_SYRFSX_EXTENDED had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 389 of file sla_syrfsx_extended.f.
subroutine zla_herfsx_extended (integer prec_type, character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, logical colequ, double precision, dimension( * ) c, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldy, * ) y, integer ldy, double precision, dimension( * ) berr_out, integer n_norms, double precision, dimension( nrhs, * ) err_bnds_norm, double precision, dimension( nrhs, * ) err_bnds_comp, complex*16, dimension( * ) res, double precision, dimension( * ) ayb, complex*16, dimension( * ) dy, complex*16, dimension( * ) y_tail, double precision rcond, integer ithresh, double precision rthresh, double precision dz_ub, logical ignore_cwise, integer info)
ZLA_HERFSX_EXTENDED improves the computed solution to a system of linear equations for Hermitian indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
Purpose:
ZLA_HERFSX_EXTENDED improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. This subroutine is called by ZHERFSX to perform iterative refinement. In addition to normwise error bound, the code provides maximum componentwise error bound if possible. See comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds. Note that this subroutine is only responsible for setting the second fields of ERR_BNDS_NORM and ERR_BNDS_COMP.
- Parameters
PREC_TYPE
PREC_TYPE is INTEGER Specifies the intermediate precision to be used in refinement. The value is defined by ILAPREC(P) where P is a CHARACTER and P = 'S': Single = 'D': Double = 'I': Indigenous = 'X' or 'E': Extra
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right-hand-sides, i.e., the number of columns of the matrix B.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX*16 array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHETRF.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHETRF.
COLEQU
COLEQU is LOGICAL If .TRUE. then column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly.
C
C is DOUBLE PRECISION array, dimension (N) The column scale factors for A. If COLEQU = .FALSE., C is not accessed. If C is input, each element of C should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
B
B is COMPLEX*16 array, dimension (LDB,NRHS) The right-hand-side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Y
Y is COMPLEX*16 array, dimension (LDY,NRHS) On entry, the solution matrix X, as computed by ZHETRS. On exit, the improved solution matrix Y.
LDY
LDY is INTEGER The leading dimension of the array Y. LDY >= max(1,N).
BERR_OUT
BERR_OUT is DOUBLE PRECISION array, dimension (NRHS) On exit, BERR_OUT(j) contains the componentwise relative backward error for right-hand-side j from the formula max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) where abs(Z) is the componentwise absolute value of the matrix or vector Z. This is computed by ZLA_LIN_BERR.
N_NORMS
N_NORMS is INTEGER Determines which error bounds to return (see ERR_BNDS_NORM and ERR_BNDS_COMP). If N_NORMS >= 1 return normwise error bounds. If N_NORMS >= 2 return componentwise error bounds.
ERR_BNDS_NORM
ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the ith solution vector: max_j (abs(XTRUE(j,i) - X(j,i))) ------------------------------ max_j abs(X(j,i)) The array is indexed by the type of error information as described below. There currently are up to three pieces of information returned. The first index in ERR_BNDS_NORM(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_NORM(:,err) contains the following three fields: err = 1 'Trust/don't trust' boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 'Guaranteed' error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated normwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is 'guaranteed'. These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*A, where S scales each row by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions.
ERR_BNDS_COMP
ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows: Componentwise relative error in the ith solution vector: abs(XTRUE(j,i) - X(j,i)) max_j ---------------------- abs(X(j,i)) The array is indexed by the right-hand side i (on which the componentwise relative error depends), and the type of error information as described below. There currently are up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (PARAMS(3) = 0.0), then ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most the first (:,N_ERR_BNDS) entries are returned. The first index in ERR_BNDS_COMP(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_COMP(:,err) contains the following three fields: err = 1 'Trust/don't trust' boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 'Guaranteed' error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated componentwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is 'guaranteed'. These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*(A*diag(x)), where x is the solution for the current right-hand side and S scales each row of A*diag(x) by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions.
RES
RES is COMPLEX*16 array, dimension (N) Workspace to hold the intermediate residual.
AYB
AYB is DOUBLE PRECISION array, dimension (N) Workspace.
DY
DY is COMPLEX*16 array, dimension (N) Workspace to hold the intermediate solution.
Y_TAIL
Y_TAIL is COMPLEX*16 array, dimension (N) Workspace to hold the trailing bits of the intermediate solution.
RCOND
RCOND is DOUBLE PRECISION Reciprocal scaled condition number. This is an estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If this is less than the machine precision (in particular, if it is zero), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill- conditioned.
ITHRESH
ITHRESH is INTEGER The maximum number of residual computations allowed for refinement. The default is 10. For 'aggressive' set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
RTHRESH
RTHRESH is DOUBLE PRECISION Determines when to stop refinement if the error estimate stops decreasing. Refinement will stop when the next solution no longer satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The default value is 0.5. For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices. See LAWN 165 for more details.
DZ_UB
DZ_UB is DOUBLE PRECISION Determines when to start considering componentwise convergence. Componentwise convergence is only considered after each component of the solution Y is stable, which we define as the relative change in each component being less than DZ_UB. The default value is 0.25, requiring the first bit to be stable. See LAWN 165 for more details.
IGNORE_CWISE
IGNORE_CWISE is LOGICAL If .TRUE. then ignore componentwise convergence. Default value is .FALSE..
INFO
INFO is INTEGER = 0: Successful exit. < 0: if INFO = -i, the ith argument to ZLA_HERFSX_EXTENDED had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 388 of file zla_herfsx_extended.f.
subroutine zla_syrfsx_extended (integer prec_type, character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, logical colequ, double precision, dimension( * ) c, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldy, * ) y, integer ldy, double precision, dimension( * ) berr_out, integer n_norms, double precision, dimension( nrhs, * ) err_bnds_norm, double precision, dimension( nrhs, * ) err_bnds_comp, complex*16, dimension( * ) res, double precision, dimension( * ) ayb, complex*16, dimension( * ) dy, complex*16, dimension( * ) y_tail, double precision rcond, integer ithresh, double precision rthresh, double precision dz_ub, logical ignore_cwise, integer info)
ZLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
Purpose:
ZLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. This subroutine is called by ZSYRFSX to perform iterative refinement. In addition to normwise error bound, the code provides maximum componentwise error bound if possible. See comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds. Note that this subroutine is only responsible for setting the second fields of ERR_BNDS_NORM and ERR_BNDS_COMP.
- Parameters
PREC_TYPE
PREC_TYPE is INTEGER Specifies the intermediate precision to be used in refinement. The value is defined by ILAPREC(P) where P is a CHARACTER and P = 'S': Single = 'D': Double = 'I': Indigenous = 'X' or 'E': Extra
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right-hand-sides, i.e., the number of columns of the matrix B.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX*16 array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZSYTRF.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZSYTRF.
COLEQU
COLEQU is LOGICAL If .TRUE. then column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly.
C
C is DOUBLE PRECISION array, dimension (N) The column scale factors for A. If COLEQU = .FALSE., C is not accessed. If C is input, each element of C should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
B
B is COMPLEX*16 array, dimension (LDB,NRHS) The right-hand-side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Y
Y is COMPLEX*16 array, dimension (LDY,NRHS) On entry, the solution matrix X, as computed by ZSYTRS. On exit, the improved solution matrix Y.
LDY
LDY is INTEGER The leading dimension of the array Y. LDY >= max(1,N).
BERR_OUT
BERR_OUT is DOUBLE PRECISION array, dimension (NRHS) On exit, BERR_OUT(j) contains the componentwise relative backward error for right-hand-side j from the formula max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) where abs(Z) is the componentwise absolute value of the matrix or vector Z. This is computed by ZLA_LIN_BERR.
N_NORMS
N_NORMS is INTEGER Determines which error bounds to return (see ERR_BNDS_NORM and ERR_BNDS_COMP). If N_NORMS >= 1 return normwise error bounds. If N_NORMS >= 2 return componentwise error bounds.
ERR_BNDS_NORM
ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the ith solution vector: max_j (abs(XTRUE(j,i) - X(j,i))) ------------------------------ max_j abs(X(j,i)) The array is indexed by the type of error information as described below. There currently are up to three pieces of information returned. The first index in ERR_BNDS_NORM(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_NORM(:,err) contains the following three fields: err = 1 'Trust/don't trust' boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 'Guaranteed' error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated normwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is 'guaranteed'. These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*A, where S scales each row by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions.
ERR_BNDS_COMP
ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) For each right-hand side, this array contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows: Componentwise relative error in the ith solution vector: abs(XTRUE(j,i) - X(j,i)) max_j ---------------------- abs(X(j,i)) The array is indexed by the right-hand side i (on which the componentwise relative error depends), and the type of error information as described below. There currently are up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (PARAMS(3) = 0.0), then ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most the first (:,N_ERR_BNDS) entries are returned. The first index in ERR_BNDS_COMP(i,:) corresponds to the ith right-hand side. The second index in ERR_BNDS_COMP(:,err) contains the following three fields: err = 1 'Trust/don't trust' boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 'Guaranteed' error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated componentwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is 'guaranteed'. These reciprocal condition numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*(A*diag(x)), where x is the solution for the current right-hand side and S scales each row of A*diag(x) by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions.
RES
RES is COMPLEX*16 array, dimension (N) Workspace to hold the intermediate residual.
AYB
AYB is DOUBLE PRECISION array, dimension (N) Workspace.
DY
DY is COMPLEX*16 array, dimension (N) Workspace to hold the intermediate solution.
Y_TAIL
Y_TAIL is COMPLEX*16 array, dimension (N) Workspace to hold the trailing bits of the intermediate solution.
RCOND
RCOND is DOUBLE PRECISION Reciprocal scaled condition number. This is an estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If this is less than the machine precision (in particular, if it is zero), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill- conditioned.
ITHRESH
ITHRESH is INTEGER The maximum number of residual computations allowed for refinement. The default is 10. For 'aggressive' set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
RTHRESH
RTHRESH is DOUBLE PRECISION Determines when to stop refinement if the error estimate stops decreasing. Refinement will stop when the next solution no longer satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The default value is 0.5. For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices. See LAWN 165 for more details.
DZ_UB
DZ_UB is DOUBLE PRECISION Determines when to start considering componentwise convergence. Componentwise convergence is only considered after each component of the solution Y is stable, which we define as the relative change in each component being less than DZ_UB. The default value is 0.25, requiring the first bit to be stable. See LAWN 165 for more details.
IGNORE_CWISE
IGNORE_CWISE is LOGICAL If .TRUE. then ignore componentwise convergence. Default value is .FALSE..
INFO
INFO is INTEGER = 0: Successful exit. < 0: if INFO = -i, the ith argument to ZLA_HERFSX_EXTENDED had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 388 of file zla_syrfsx_extended.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.