hpr2 - Man Page

{hp,sp}r2: Hermitian/symmetric rank-2 update

Synopsis

Functions

subroutine chpr2 (uplo, n, alpha, x, incx, y, incy, ap)
CHPR2
subroutine dspr2 (uplo, n, alpha, x, incx, y, incy, ap)
DSPR2
subroutine sspr2 (uplo, n, alpha, x, incx, y, incy, ap)
SSPR2
subroutine zhpr2 (uplo, n, alpha, x, incx, y, incy, ap)
ZHPR2

Detailed Description

Function Documentation

subroutine chpr2 (character uplo, integer n, complex alpha, complex, dimension(*) x, integer incx, complex, dimension(*) y, integer incy, complex, dimension(*) ap)

CHPR2

Purpose:

 CHPR2  performs the hermitian rank 2 operation

    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,

 where alpha is a scalar, x and y are n element vectors and A is an
 n by n hermitian matrix, supplied in packed form.
Parameters

UPLO

          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the matrix A is supplied in the packed
           array AP as follows:

              UPLO = 'U' or 'u'   The upper triangular part of A is
                                  supplied in AP.

              UPLO = 'L' or 'l'   The lower triangular part of A is
                                  supplied in AP.

N

          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.

ALPHA

          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha.

X

          X is COMPLEX array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x.

INCX

          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.

Y

          Y is COMPLEX array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) ).
           Before entry, the incremented array Y must contain the n
           element vector y.

INCY

          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.

AP

          AP is COMPLEX array, dimension at least
           ( ( n*( n + 1 ) )/2 ).
           Before entry with  UPLO = 'U' or 'u', the array AP must
           contain the upper triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
           and a( 2, 2 ) respectively, and so on. On exit, the array
           AP is overwritten by the upper triangular part of the
           updated matrix.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
           and a( 3, 1 ) respectively, and so on. On exit, the array
           AP is overwritten by the lower triangular part of the
           updated matrix.
           Note that the imaginary parts of the diagonal elements need
           not be set, they are assumed to be zero, and on exit they
           are set to zero.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 144 of file chpr2.f.

subroutine dspr2 (character uplo, integer n, double precision alpha, double precision, dimension(*) x, integer incx, double precision, dimension(*) y, integer incy, double precision, dimension(*) ap)

DSPR2

Purpose:

 DSPR2  performs the symmetric rank 2 operation

    A := alpha*x*y**T + alpha*y*x**T + A,

 where alpha is a scalar, x and y are n element vectors and A is an
 n by n symmetric matrix, supplied in packed form.
Parameters

UPLO

          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the matrix A is supplied in the packed
           array AP as follows:

              UPLO = 'U' or 'u'   The upper triangular part of A is
                                  supplied in AP.

              UPLO = 'L' or 'l'   The lower triangular part of A is
                                  supplied in AP.

N

          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.

ALPHA

          ALPHA is DOUBLE PRECISION.
           On entry, ALPHA specifies the scalar alpha.

X

          X is DOUBLE PRECISION array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x.

INCX

          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.

Y

          Y is DOUBLE PRECISION array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) ).
           Before entry, the incremented array Y must contain the n
           element vector y.

INCY

          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.

AP

          AP is DOUBLE PRECISION array, dimension at least
           ( ( n*( n + 1 ) )/2 ).
           Before entry with  UPLO = 'U' or 'u', the array AP must
           contain the upper triangular part of the symmetric matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
           and a( 2, 2 ) respectively, and so on. On exit, the array
           AP is overwritten by the upper triangular part of the
           updated matrix.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular part of the symmetric matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
           and a( 3, 1 ) respectively, and so on. On exit, the array
           AP is overwritten by the lower triangular part of the
           updated matrix.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 141 of file dspr2.f.

subroutine sspr2 (character uplo, integer n, real alpha, real, dimension(*) x, integer incx, real, dimension(*) y, integer incy, real, dimension(*) ap)

SSPR2

Purpose:

 SSPR2  performs the symmetric rank 2 operation

    A := alpha*x*y**T + alpha*y*x**T + A,

 where alpha is a scalar, x and y are n element vectors and A is an
 n by n symmetric matrix, supplied in packed form.
Parameters

UPLO

          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the matrix A is supplied in the packed
           array AP as follows:

              UPLO = 'U' or 'u'   The upper triangular part of A is
                                  supplied in AP.

              UPLO = 'L' or 'l'   The lower triangular part of A is
                                  supplied in AP.

N

          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.

ALPHA

          ALPHA is REAL
           On entry, ALPHA specifies the scalar alpha.

X

          X is REAL array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x.

INCX

          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.

Y

          Y is REAL array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) ).
           Before entry, the incremented array Y must contain the n
           element vector y.

INCY

          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.

AP

          AP is REAL array, dimension at least
           ( ( n*( n + 1 ) )/2 ).
           Before entry with  UPLO = 'U' or 'u', the array AP must
           contain the upper triangular part of the symmetric matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
           and a( 2, 2 ) respectively, and so on. On exit, the array
           AP is overwritten by the upper triangular part of the
           updated matrix.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular part of the symmetric matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
           and a( 3, 1 ) respectively, and so on. On exit, the array
           AP is overwritten by the lower triangular part of the
           updated matrix.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 141 of file sspr2.f.

subroutine zhpr2 (character uplo, integer n, complex*16 alpha, complex*16, dimension(*) x, integer incx, complex*16, dimension(*) y, integer incy, complex*16, dimension(*) ap)

ZHPR2

Purpose:

 ZHPR2  performs the hermitian rank 2 operation

    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,

 where alpha is a scalar, x and y are n element vectors and A is an
 n by n hermitian matrix, supplied in packed form.
Parameters

UPLO

          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the matrix A is supplied in the packed
           array AP as follows:

              UPLO = 'U' or 'u'   The upper triangular part of A is
                                  supplied in AP.

              UPLO = 'L' or 'l'   The lower triangular part of A is
                                  supplied in AP.

N

          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.

ALPHA

          ALPHA is COMPLEX*16
           On entry, ALPHA specifies the scalar alpha.

X

          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x.

INCX

          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.

Y

          Y is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) ).
           Before entry, the incremented array Y must contain the n
           element vector y.

INCY

          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.

AP

          AP is COMPLEX*16 array, dimension at least
           ( ( n*( n + 1 ) )/2 ).
           Before entry with  UPLO = 'U' or 'u', the array AP must
           contain the upper triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
           and a( 2, 2 ) respectively, and so on. On exit, the array
           AP is overwritten by the upper triangular part of the
           updated matrix.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
           and a( 3, 1 ) respectively, and so on. On exit, the array
           AP is overwritten by the lower triangular part of the
           updated matrix.
           Note that the imaginary parts of the diagonal elements need
           not be set, they are assumed to be zero, and on exit they
           are set to zero.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 144 of file zhpr2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK