hpevd - Man Page

{hp,sp}evd: eig, divide and conquer

Synopsis

Functions

subroutine chpevd (jobz, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
CHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
subroutine dspevd (jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)
DSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
subroutine sspevd (jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)
SSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
subroutine zhpevd (jobz, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Detailed Description

Function Documentation

subroutine chpevd (character jobz, character uplo, integer n, complex, dimension( * ) ap, real, dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)

CHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices  

Purpose:

 CHPEVD computes all the eigenvalues and, optionally, eigenvectors of
 a complex Hermitian matrix A in packed storage.  If eigenvectors are
 desired, it uses a divide and conquer algorithm.
Parameters

JOBZ

          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

          On exit, AP is overwritten by values generated during the
          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
          and first superdiagonal of the tridiagonal matrix T overwrite
          the corresponding elements of A, and if UPLO = 'L', the
          diagonal and first subdiagonal of T overwrite the
          corresponding elements of A.

W

          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.

Z

          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.

LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).

WORK

          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the required LWORK.

LWORK

          LWORK is INTEGER
          The dimension of array WORK.
          If N <= 1,               LWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LWORK must be at least N.
          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the required sizes of the WORK, RWORK and
          IWORK arrays, returns these values as the first entries of
          the WORK, RWORK and IWORK arrays, and no error message
          related to LWORK or LRWORK or LIWORK is issued by XERBLA.

RWORK

          RWORK is REAL array, dimension (MAX(1,LRWORK))
          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.

LRWORK

          LRWORK is INTEGER
          The dimension of array RWORK.
          If N <= 1,               LRWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
          If JOBZ = 'V' and N > 1, LRWORK must be at least
                    1 + 5*N + 2*N**2.

          If LRWORK = -1, then a workspace query is assumed; the
          routine only calculates the required sizes of the WORK, RWORK
          and IWORK arrays, returns these values as the first entries
          of the WORK, RWORK and IWORK arrays, and no error message
          related to LWORK or LRWORK or LIWORK is issued by XERBLA.

IWORK

          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.

LIWORK

          LIWORK is INTEGER
          The dimension of array IWORK.
          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.

          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the required sizes of the WORK, RWORK
          and IWORK arrays, returns these values as the first entries
          of the WORK, RWORK and IWORK arrays, and no error message
          related to LWORK or LRWORK or LIWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 192 of file chpevd.f.

subroutine dspevd (character jobz, character uplo, integer n, double precision, dimension( * ) ap, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)

DSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices  

Purpose:

 DSPEVD computes all the eigenvalues and, optionally, eigenvectors
 of a real symmetric matrix A in packed storage. If eigenvectors are
 desired, it uses a divide and conquer algorithm.
Parameters

JOBZ

          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

          On exit, AP is overwritten by values generated during the
          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
          and first superdiagonal of the tridiagonal matrix T overwrite
          the corresponding elements of A, and if UPLO = 'L', the
          diagonal and first subdiagonal of T overwrite the
          corresponding elements of A.

W

          W is DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.

Z

          Z is DOUBLE PRECISION array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.

LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).

WORK

          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the required LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If N <= 1,               LWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
          If JOBZ = 'V' and N > 1, LWORK must be at least
                                                 1 + 6*N + N**2.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the required sizes of the WORK and IWORK
          arrays, returns these values as the first entries of the WORK
          and IWORK arrays, and no error message related to LWORK or
          LIWORK is issued by XERBLA.

IWORK

          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.

LIWORK

          LIWORK is INTEGER
          The dimension of the array IWORK.
          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.

          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the required sizes of the WORK and
          IWORK arrays, returns these values as the first entries of
          the WORK and IWORK arrays, and no error message related to
          LWORK or LIWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 170 of file dspevd.f.

subroutine sspevd (character jobz, character uplo, integer n, real, dimension( * ) ap, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)

SSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices  

Purpose:

 SSPEVD computes all the eigenvalues and, optionally, eigenvectors
 of a real symmetric matrix A in packed storage. If eigenvectors are
 desired, it uses a divide and conquer algorithm.
Parameters

JOBZ

          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is REAL array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

          On exit, AP is overwritten by values generated during the
          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
          and first superdiagonal of the tridiagonal matrix T overwrite
          the corresponding elements of A, and if UPLO = 'L', the
          diagonal and first subdiagonal of T overwrite the
          corresponding elements of A.

W

          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.

Z

          Z is REAL array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.

LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).

WORK

          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the required LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If N <= 1,               LWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
          If JOBZ = 'V' and N > 1, LWORK must be at least
                                                 1 + 6*N + N**2.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the required sizes of the WORK and IWORK
          arrays, returns these values as the first entries of the WORK
          and IWORK arrays, and no error message related to LWORK or
          LIWORK is issued by XERBLA.

IWORK

          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.

LIWORK

          LIWORK is INTEGER
          The dimension of the array IWORK.
          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.

          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the required sizes of the WORK and
          IWORK arrays, returns these values as the first entries of
          the WORK and IWORK arrays, and no error message related to
          LWORK or LIWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 170 of file sspevd.f.

subroutine zhpevd (character jobz, character uplo, integer n, complex*16, dimension( * ) ap, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)

ZHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices  

Purpose:

 ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of
 a complex Hermitian matrix A in packed storage.  If eigenvectors are
 desired, it uses a divide and conquer algorithm.
Parameters

JOBZ

          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

          On exit, AP is overwritten by values generated during the
          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
          and first superdiagonal of the tridiagonal matrix T overwrite
          the corresponding elements of A, and if UPLO = 'L', the
          diagonal and first subdiagonal of T overwrite the
          corresponding elements of A.

W

          W is DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.

Z

          Z is COMPLEX*16 array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.

LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).

WORK

          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the required LWORK.

LWORK

          LWORK is INTEGER
          The dimension of array WORK.
          If N <= 1,               LWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LWORK must be at least N.
          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the required sizes of the WORK, RWORK and
          IWORK arrays, returns these values as the first entries of
          the WORK, RWORK and IWORK arrays, and no error message
          related to LWORK or LRWORK or LIWORK is issued by XERBLA.

RWORK

          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.

LRWORK

          LRWORK is INTEGER
          The dimension of array RWORK.
          If N <= 1,               LRWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
          If JOBZ = 'V' and N > 1, LRWORK must be at least
                    1 + 5*N + 2*N**2.

          If LRWORK = -1, then a workspace query is assumed; the
          routine only calculates the required sizes of the WORK, RWORK
          and IWORK arrays, returns these values as the first entries
          of the WORK, RWORK and IWORK arrays, and no error message
          related to LWORK or LRWORK or LIWORK is issued by XERBLA.

IWORK

          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.

LIWORK

          LIWORK is INTEGER
          The dimension of array IWORK.
          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.

          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the required sizes of the WORK, RWORK
          and IWORK arrays, returns these values as the first entries
          of the WORK, RWORK and IWORK arrays, and no error message
          related to LWORK or LRWORK or LIWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 192 of file zhpevd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK