hesvx - Man Page
{he,sy}svx: rook (v1, expert)
Synopsis
Functions
subroutine chesvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work, lwork, rwork, info)
CHESVX computes the solution to system of linear equations A * X = B for HE matrices
subroutine csysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work, lwork, rwork, info)
CSYSVX computes the solution to system of linear equations A * X = B for SY matrices
subroutine dsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work, lwork, iwork, info)
DSYSVX computes the solution to system of linear equations A * X = B for SY matrices
subroutine ssysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work, lwork, iwork, info)
SSYSVX computes the solution to system of linear equations A * X = B for SY matrices
subroutine zhesvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work, lwork, rwork, info)
ZHESVX computes the solution to system of linear equations A * X = B for HE matrices
subroutine zsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work, lwork, rwork, info)
ZSYSVX computes the solution to system of linear equations A * X = B for SY matrices
Detailed Description
Function Documentation
subroutine chesvx (character fact, character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real rcond, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer info)
CHESVX computes the solution to system of linear equations A * X = B for HE matrices
Purpose:
CHESVX uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS matrices. Error bounds on the solution and a condition estimate are also provided.
Description:
The following steps are performed: 1. If FACT = 'N', the diagonal pivoting method is used to factor A. The form of the factorization is A = U * D * U**H, if UPLO = 'U', or A = L * D * L**H, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. 2. If some D(i,i)=0, so that D is exactly singular, then the routine returns with INFO = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, INFO = N+1 is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below. 3. The system of equations is solved for X using the factored form of A. 4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
- Parameters
FACT
FACT is CHARACTER*1 Specifies whether or not the factored form of A has been supplied on entry. = 'F': On entry, AF and IPIV contain the factored form of A. A, AF and IPIV will not be modified. = 'N': The matrix A will be copied to AF and factored.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A
A is COMPLEX array, dimension (LDA,N) The Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX array, dimension (LDAF,N) If FACT = 'F', then AF is an input argument and on entry contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**H or A = L*D*L**H as computed by CHETRF. If FACT = 'N', then AF is an output argument and on exit returns the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**H or A = L*D*L**H.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) If FACT = 'F', then IPIV is an input argument and on entry contains details of the interchanges and the block structure of D, as determined by CHETRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. If FACT = 'N', then IPIV is an output argument and on exit contains details of the interchanges and the block structure of D, as determined by CHETRF.
B
B is COMPLEX array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX array, dimension (LDX,NRHS) If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
RCOND
RCOND is REAL The estimate of the reciprocal condition number of the matrix A. If RCOND is less than the machine precision (in particular, if RCOND = 0), the matrix is singular to working precision. This condition is indicated by a return code of INFO > 0.
FERR
FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The length of WORK. LWORK >= max(1,2*N), and for best performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where NB is the optimal blocksize for CHETRF. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
RWORK
RWORK is REAL array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= N: D(i,i) is exactly zero. The factorization has been completed but the factor D is exactly singular, so the solution and error bounds could not be computed. RCOND = 0 is returned. = N+1: D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of RCOND would suggest.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 282 of file chesvx.f.
subroutine csysvx (character fact, character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real rcond, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer info)
CSYSVX computes the solution to system of linear equations A * X = B for SY matrices
Purpose:
CSYSVX uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. Error bounds on the solution and a condition estimate are also provided.
Description:
The following steps are performed: 1. If FACT = 'N', the diagonal pivoting method is used to factor A. The form of the factorization is A = U * D * U**T, if UPLO = 'U', or A = L * D * L**T, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. 2. If some D(i,i)=0, so that D is exactly singular, then the routine returns with INFO = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, INFO = N+1 is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below. 3. The system of equations is solved for X using the factored form of A. 4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
- Parameters
FACT
FACT is CHARACTER*1 Specifies whether or not the factored form of A has been supplied on entry. = 'F': On entry, AF and IPIV contain the factored form of A. A, AF and IPIV will not be modified. = 'N': The matrix A will be copied to AF and factored.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A
A is COMPLEX array, dimension (LDA,N) The symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX array, dimension (LDAF,N) If FACT = 'F', then AF is an input argument and on entry contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by CSYTRF. If FACT = 'N', then AF is an output argument and on exit returns the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) If FACT = 'F', then IPIV is an input argument and on entry contains details of the interchanges and the block structure of D, as determined by CSYTRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. If FACT = 'N', then IPIV is an output argument and on exit contains details of the interchanges and the block structure of D, as determined by CSYTRF.
B
B is COMPLEX array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX array, dimension (LDX,NRHS) If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
RCOND
RCOND is REAL The estimate of the reciprocal condition number of the matrix A. If RCOND is less than the machine precision (in particular, if RCOND = 0), the matrix is singular to working precision. This condition is indicated by a return code of INFO > 0.
FERR
FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The length of WORK. LWORK >= max(1,2*N), and for best performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where NB is the optimal blocksize for CSYTRF. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
RWORK
RWORK is REAL array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= N: D(i,i) is exactly zero. The factorization has been completed but the factor D is exactly singular, so the solution and error bounds could not be computed. RCOND = 0 is returned. = N+1: D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of RCOND would suggest.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 282 of file csysvx.f.
subroutine dsysvx (character fact, character uplo, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision rcond, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer info)
DSYSVX computes the solution to system of linear equations A * X = B for SY matrices
Purpose:
DSYSVX uses the diagonal pivoting factorization to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. Error bounds on the solution and a condition estimate are also provided.
Description:
The following steps are performed: 1. If FACT = 'N', the diagonal pivoting method is used to factor A. The form of the factorization is A = U * D * U**T, if UPLO = 'U', or A = L * D * L**T, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. 2. If some D(i,i)=0, so that D is exactly singular, then the routine returns with INFO = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, INFO = N+1 is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below. 3. The system of equations is solved for X using the factored form of A. 4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
- Parameters
FACT
FACT is CHARACTER*1 Specifies whether or not the factored form of A has been supplied on entry. = 'F': On entry, AF and IPIV contain the factored form of A. AF and IPIV will not be modified. = 'N': The matrix A will be copied to AF and factored.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N) The symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is DOUBLE PRECISION array, dimension (LDAF,N) If FACT = 'F', then AF is an input argument and on entry contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by DSYTRF. If FACT = 'N', then AF is an output argument and on exit returns the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) If FACT = 'F', then IPIV is an input argument and on entry contains details of the interchanges and the block structure of D, as determined by DSYTRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. If FACT = 'N', then IPIV is an output argument and on exit contains details of the interchanges and the block structure of D, as determined by DSYTRF.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is DOUBLE PRECISION array, dimension (LDX,NRHS) If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
RCOND
RCOND is DOUBLE PRECISION The estimate of the reciprocal condition number of the matrix A. If RCOND is less than the machine precision (in particular, if RCOND = 0), the matrix is singular to working precision. This condition is indicated by a return code of INFO > 0.
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The length of WORK. LWORK >= max(1,3*N), and for best performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where NB is the optimal blocksize for DSYTRF. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= N: D(i,i) is exactly zero. The factorization has been completed but the factor D is exactly singular, so the solution and error bounds could not be computed. RCOND = 0 is returned. = N+1: D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of RCOND would suggest.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 281 of file dsysvx.f.
subroutine ssysvx (character fact, character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real rcond, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer info)
SSYSVX computes the solution to system of linear equations A * X = B for SY matrices
Purpose:
SSYSVX uses the diagonal pivoting factorization to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. Error bounds on the solution and a condition estimate are also provided.
Description:
The following steps are performed: 1. If FACT = 'N', the diagonal pivoting method is used to factor A. The form of the factorization is A = U * D * U**T, if UPLO = 'U', or A = L * D * L**T, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. 2. If some D(i,i)=0, so that D is exactly singular, then the routine returns with INFO = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, INFO = N+1 is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below. 3. The system of equations is solved for X using the factored form of A. 4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
- Parameters
FACT
FACT is CHARACTER*1 Specifies whether or not the factored form of A has been supplied on entry. = 'F': On entry, AF and IPIV contain the factored form of A. AF and IPIV will not be modified. = 'N': The matrix A will be copied to AF and factored.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A
A is REAL array, dimension (LDA,N) The symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is REAL array, dimension (LDAF,N) If FACT = 'F', then AF is an input argument and on entry contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by SSYTRF. If FACT = 'N', then AF is an output argument and on exit returns the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) If FACT = 'F', then IPIV is an input argument and on entry contains details of the interchanges and the block structure of D, as determined by SSYTRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. If FACT = 'N', then IPIV is an output argument and on exit contains details of the interchanges and the block structure of D, as determined by SSYTRF.
B
B is REAL array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is REAL array, dimension (LDX,NRHS) If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
RCOND
RCOND is REAL The estimate of the reciprocal condition number of the matrix A. If RCOND is less than the machine precision (in particular, if RCOND = 0), the matrix is singular to working precision. This condition is indicated by a return code of INFO > 0.
FERR
FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The length of WORK. LWORK >= max(1,3*N), and for best performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where NB is the optimal blocksize for SSYTRF. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= N: D(i,i) is exactly zero. The factorization has been completed but the factor D is exactly singular, so the solution and error bounds could not be computed. RCOND = 0 is returned. = N+1: D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of RCOND would suggest.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 281 of file ssysvx.f.
subroutine zhesvx (character fact, character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision rcond, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer info)
ZHESVX computes the solution to system of linear equations A * X = B for HE matrices
Purpose:
ZHESVX uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS matrices. Error bounds on the solution and a condition estimate are also provided.
Description:
The following steps are performed: 1. If FACT = 'N', the diagonal pivoting method is used to factor A. The form of the factorization is A = U * D * U**H, if UPLO = 'U', or A = L * D * L**H, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. 2. If some D(i,i)=0, so that D is exactly singular, then the routine returns with INFO = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, INFO = N+1 is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below. 3. The system of equations is solved for X using the factored form of A. 4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
- Parameters
FACT
FACT is CHARACTER*1 Specifies whether or not the factored form of A has been supplied on entry. = 'F': On entry, AF and IPIV contain the factored form of A. A, AF and IPIV will not be modified. = 'N': The matrix A will be copied to AF and factored.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N) The Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX*16 array, dimension (LDAF,N) If FACT = 'F', then AF is an input argument and on entry contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**H or A = L*D*L**H as computed by ZHETRF. If FACT = 'N', then AF is an output argument and on exit returns the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**H or A = L*D*L**H.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) If FACT = 'F', then IPIV is an input argument and on entry contains details of the interchanges and the block structure of D, as determined by ZHETRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. If FACT = 'N', then IPIV is an output argument and on exit contains details of the interchanges and the block structure of D, as determined by ZHETRF.
B
B is COMPLEX*16 array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX*16 array, dimension (LDX,NRHS) If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
RCOND
RCOND is DOUBLE PRECISION The estimate of the reciprocal condition number of the matrix A. If RCOND is less than the machine precision (in particular, if RCOND = 0), the matrix is singular to working precision. This condition is indicated by a return code of INFO > 0.
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The length of WORK. LWORK >= max(1,2*N), and for best performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where NB is the optimal blocksize for ZHETRF. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
RWORK
RWORK is DOUBLE PRECISION array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= N: D(i,i) is exactly zero. The factorization has been completed but the factor D is exactly singular, so the solution and error bounds could not be computed. RCOND = 0 is returned. = N+1: D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of RCOND would suggest.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 282 of file zhesvx.f.
subroutine zsysvx (character fact, character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision rcond, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer info)
ZSYSVX computes the solution to system of linear equations A * X = B for SY matrices
Purpose:
ZSYSVX uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. Error bounds on the solution and a condition estimate are also provided.
Description:
The following steps are performed: 1. If FACT = 'N', the diagonal pivoting method is used to factor A. The form of the factorization is A = U * D * U**T, if UPLO = 'U', or A = L * D * L**T, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. 2. If some D(i,i)=0, so that D is exactly singular, then the routine returns with INFO = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, INFO = N+1 is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below. 3. The system of equations is solved for X using the factored form of A. 4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
- Parameters
FACT
FACT is CHARACTER*1 Specifies whether or not the factored form of A has been supplied on entry. = 'F': On entry, AF and IPIV contain the factored form of A. A, AF and IPIV will not be modified. = 'N': The matrix A will be copied to AF and factored.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N) The symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX*16 array, dimension (LDAF,N) If FACT = 'F', then AF is an input argument and on entry contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by ZSYTRF. If FACT = 'N', then AF is an output argument and on exit returns the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) If FACT = 'F', then IPIV is an input argument and on entry contains details of the interchanges and the block structure of D, as determined by ZSYTRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. If FACT = 'N', then IPIV is an output argument and on exit contains details of the interchanges and the block structure of D, as determined by ZSYTRF.
B
B is COMPLEX*16 array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX*16 array, dimension (LDX,NRHS) If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
RCOND
RCOND is DOUBLE PRECISION The estimate of the reciprocal condition number of the matrix A. If RCOND is less than the machine precision (in particular, if RCOND = 0), the matrix is singular to working precision. This condition is indicated by a return code of INFO > 0.
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The length of WORK. LWORK >= max(1,2*N), and for best performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where NB is the optimal blocksize for ZSYTRF. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
RWORK
RWORK is DOUBLE PRECISION array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= N: D(i,i) is exactly zero. The factorization has been completed but the factor D is exactly singular, so the solution and error bounds could not be computed. RCOND = 0 is returned. = N+1: D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of RCOND would suggest.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 282 of file zsysvx.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.