heevd_2stage - Man Page
{he,sy}evd_2stage: eig, divide and conquer
Synopsis
Functions
subroutine cheevd_2stage (jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info)
CHEEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
subroutine dsyevd_2stage (jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
DSYEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
subroutine ssyevd_2stage (jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
SSYEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
subroutine zheevd_2stage (jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHEEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Detailed Description
Function Documentation
subroutine cheevd_2stage (character jobz, character uplo, integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) w, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)
CHEEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Purpose:
CHEEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A using the 2stage technique for the reduction to tridiagonal. If eigenvectors are desired, it uses a divide and conquer algorithm.
- Parameters
JOBZ
JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. Not available in this release.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The order of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
W
W is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order.
WORK
WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = 'N' and N > 1, LWORK must be queried. LWORK = MAX(1, dimension) where dimension = max(stage1,stage2) + (KD+1)*N + N+1 = N*KD + N*max(KD+1,FACTOPTNB) + max(2*KD*KD, KD*NTHREADS) + (KD+1)*N + N+1 where KD is the blocking size of the reduction, FACTOPTNB is the blocking used by the QR or LQ algorithm, usually FACTOPTNB=128 is a good choice NTHREADS is the number of threads used when openMP compilation is enabled, otherwise =1. If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2 If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
RWORK is REAL array, dimension (LRWORK) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
LRWORK
LRWORK is INTEGER The dimension of the array RWORK. If N <= 1, LRWORK must be at least 1. If JOBZ = 'N' and N > 1, LRWORK must be at least N. If JOBZ = 'V' and N > 1, LRWORK must be at least 1 + 5*N + 2*N**2. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
LIWORK is INTEGER The dimension of the array IWORK. If N <= 1, LIWORK must be at least 1. If JOBZ = 'N' and N > 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i and JOBZ = 'N', then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Further Details:
Modified description of INFO. Sven, 16 Feb 05.
- Contributors:
Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
Further Details:
All details about the 2stage techniques are available in: Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages. http://doi.acm.org/10.1145/2063384.2063394 A. Haidar, J. Kurzak, P. Luszczek, 2013. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13). Denver, Colorado, USA, 2013. Article 90, 12 pages. http://doi.acm.org/10.1145/2503210.2503292 A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks. International Journal of High Performance Computing Applications. Volume 28 Issue 2, Pages 196-209, May 2014. http://hpc.sagepub.com/content/28/2/196
Definition at line 245 of file cheevd_2stage.f.
subroutine dsyevd_2stage (character jobz, character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) w, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)
DSYEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Purpose:
DSYEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A using the 2stage technique for the reduction to tridiagonal. If eigenvectors are desired, it uses a divide and conquer algorithm.
- Parameters
JOBZ
JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. Not available in this release.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The order of the matrix A. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
W
W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order.
WORK
WORK is DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = 'N' and N > 1, LWORK must be queried. LWORK = MAX(1, dimension) where dimension = max(stage1,stage2) + (KD+1)*N + 2*N+1 = N*KD + N*max(KD+1,FACTOPTNB) + max(2*KD*KD, KD*NTHREADS) + (KD+1)*N + 2*N+1 where KD is the blocking size of the reduction, FACTOPTNB is the blocking used by the QR or LQ algorithm, usually FACTOPTNB=128 is a good choice NTHREADS is the number of threads used when openMP compilation is enabled, otherwise =1. If JOBZ = 'V' and N > 1, LWORK must be at least 1 + 6*N + 2*N**2. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
LIWORK is INTEGER The dimension of the array IWORK. If N <= 1, LIWORK must be at least 1. If JOBZ = 'N' and N > 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i and JOBZ = 'N', then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee
Modified description of INFO. Sven, 16 Feb 05.
Further Details:
All details about the 2stage techniques are available in: Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages. http://doi.acm.org/10.1145/2063384.2063394 A. Haidar, J. Kurzak, P. Luszczek, 2013. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13). Denver, Colorado, USA, 2013. Article 90, 12 pages. http://doi.acm.org/10.1145/2503210.2503292 A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks. International Journal of High Performance Computing Applications. Volume 28 Issue 2, Pages 196-209, May 2014. http://hpc.sagepub.com/content/28/2/196
Definition at line 219 of file dsyevd_2stage.f.
subroutine ssyevd_2stage (character jobz, character uplo, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) w, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)
SSYEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Purpose:
SSYEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A using the 2stage technique for the reduction to tridiagonal. If eigenvectors are desired, it uses a divide and conquer algorithm.
- Parameters
JOBZ
JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. Not available in this release.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The order of the matrix A. N >= 0.
A
A is REAL array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
W
W is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order.
WORK
WORK is REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = 'N' and N > 1, LWORK must be queried. LWORK = MAX(1, dimension) where dimension = max(stage1,stage2) + (KD+1)*N + 2*N+1 = N*KD + N*max(KD+1,FACTOPTNB) + max(2*KD*KD, KD*NTHREADS) + (KD+1)*N + 2*N+1 where KD is the blocking size of the reduction, FACTOPTNB is the blocking used by the QR or LQ algorithm, usually FACTOPTNB=128 is a good choice NTHREADS is the number of threads used when openMP compilation is enabled, otherwise =1. If JOBZ = 'V' and N > 1, LWORK must be at least 1 + 6*N + 2*N**2. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
LIWORK is INTEGER The dimension of the array IWORK. If N <= 1, LIWORK must be at least 1. If JOBZ = 'N' and N > 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i and JOBZ = 'N', then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee
Modified description of INFO. Sven, 16 Feb 05.
Further Details:
All details about the 2stage techniques are available in: Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages. http://doi.acm.org/10.1145/2063384.2063394 A. Haidar, J. Kurzak, P. Luszczek, 2013. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13). Denver, Colorado, USA, 2013. Article 90, 12 pages. http://doi.acm.org/10.1145/2503210.2503292 A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks. International Journal of High Performance Computing Applications. Volume 28 Issue 2, Pages 196-209, May 2014. http://hpc.sagepub.com/content/28/2/196
Definition at line 219 of file ssyevd_2stage.f.
subroutine zheevd_2stage (character jobz, character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) w, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)
ZHEEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Purpose:
ZHEEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A using the 2stage technique for the reduction to tridiagonal. If eigenvectors are desired, it uses a divide and conquer algorithm.
- Parameters
JOBZ
JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. Not available in this release.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
W
W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order.
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = 'N' and N > 1, LWORK must be queried. LWORK = MAX(1, dimension) where dimension = max(stage1,stage2) + (KD+1)*N + N+1 = N*KD + N*max(KD+1,FACTOPTNB) + max(2*KD*KD, KD*NTHREADS) + (KD+1)*N + N+1 where KD is the blocking size of the reduction, FACTOPTNB is the blocking used by the QR or LQ algorithm, usually FACTOPTNB=128 is a good choice NTHREADS is the number of threads used when openMP compilation is enabled, otherwise =1. If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2 If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
RWORK is DOUBLE PRECISION array, dimension (LRWORK) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
LRWORK
LRWORK is INTEGER The dimension of the array RWORK. If N <= 1, LRWORK must be at least 1. If JOBZ = 'N' and N > 1, LRWORK must be at least N. If JOBZ = 'V' and N > 1, LRWORK must be at least 1 + 5*N + 2*N**2. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
LIWORK is INTEGER The dimension of the array IWORK. If N <= 1, LIWORK must be at least 1. If JOBZ = 'N' and N > 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i and JOBZ = 'N', then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Further Details:
Modified description of INFO. Sven, 16 Feb 05.
- Contributors:
Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
Further Details:
All details about the 2stage techniques are available in: Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages. http://doi.acm.org/10.1145/2063384.2063394 A. Haidar, J. Kurzak, P. Luszczek, 2013. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13). Denver, Colorado, USA, 2013. Article 90, 12 pages. http://doi.acm.org/10.1145/2503210.2503292 A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks. International Journal of High Performance Computing Applications. Volume 28 Issue 2, Pages 196-209, May 2014. http://hpc.sagepub.com/content/28/2/196
Definition at line 245 of file zheevd_2stage.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.