geqr2 - Man Page

geqr2: QR factor, level 2

Synopsis

Functions

subroutine cgeqr2 (m, n, a, lda, tau, work, info)
CGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
subroutine dgeqr2 (m, n, a, lda, tau, work, info)
DGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
subroutine sgeqr2 (m, n, a, lda, tau, work, info)
SGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
subroutine zgeqr2 (m, n, a, lda, tau, work, info)
ZGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.

Detailed Description

Function Documentation

subroutine cgeqr2 (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info)

CGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.  

Purpose:

 CGEQR2 computes a QR factorization of a complex m-by-n matrix A:

    A = Q * ( R ),
            ( 0 )

 where:

    Q is a m-by-m orthogonal matrix;
    R is an upper-triangular n-by-n matrix;
    0 is a (m-n)-by-n zero matrix, if m > n.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
          On entry, the m by n matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(m,n) by n upper trapezoidal matrix R (R is
          upper triangular if m >= n); the elements below the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of elementary reflectors (see Further Details).

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

TAU

          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).

WORK

          WORK is COMPLEX array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(m,n).

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i).

Definition at line 129 of file cgeqr2.f.

subroutine dgeqr2 (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info)

DGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.  

Purpose:

 DGEQR2 computes a QR factorization of a real m-by-n matrix A:

    A = Q * ( R ),
            ( 0 )

 where:

    Q is a m-by-m orthogonal matrix;
    R is an upper-triangular n-by-n matrix;
    0 is a (m-n)-by-n zero matrix, if m > n.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the m by n matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(m,n) by n upper trapezoidal matrix R (R is
          upper triangular if m >= n); the elements below the diagonal,
          with the array TAU, represent the orthogonal matrix Q as a
          product of elementary reflectors (see Further Details).

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

TAU

          TAU is DOUBLE PRECISION array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).

WORK

          WORK is DOUBLE PRECISION array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(m,n).

  Each H(i) has the form

     H(i) = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i).

Definition at line 129 of file dgeqr2.f.

subroutine sgeqr2 (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer info)

SGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.  

Purpose:

 SGEQR2 computes a QR factorization of a real m-by-n matrix A:

    A = Q * ( R ),
            ( 0 )

 where:

    Q is a m-by-m orthogonal matrix;
    R is an upper-triangular n-by-n matrix;
    0 is a (m-n)-by-n zero matrix, if m > n.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is REAL array, dimension (LDA,N)
          On entry, the m by n matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(m,n) by n upper trapezoidal matrix R (R is
          upper triangular if m >= n); the elements below the diagonal,
          with the array TAU, represent the orthogonal matrix Q as a
          product of elementary reflectors (see Further Details).

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

TAU

          TAU is REAL array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).

WORK

          WORK is REAL array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(m,n).

  Each H(i) has the form

     H(i) = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i).

Definition at line 129 of file sgeqr2.f.

subroutine zgeqr2 (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)

ZGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.  

Purpose:

 ZGEQR2 computes a QR factorization of a complex m-by-n matrix A:

    A = Q * ( R ),
            ( 0 )

 where:

    Q is a m-by-m orthogonal matrix;
    R is an upper-triangular n-by-n matrix;
    0 is a (m-n)-by-n zero matrix, if m > n.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the m by n matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(m,n) by n upper trapezoidal matrix R (R is
          upper triangular if m >= n); the elements below the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of elementary reflectors (see Further Details).

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

TAU

          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).

WORK

          WORK is COMPLEX*16 array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(m,n).

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i).

Definition at line 129 of file zgeqr2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK