geql2 - Man Page
geql2: QL factor, level 2
Synopsis
Functions
subroutine cgeql2 (m, n, a, lda, tau, work, info)
CGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
subroutine dgeql2 (m, n, a, lda, tau, work, info)
DGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
subroutine sgeql2 (m, n, a, lda, tau, work, info)
SGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
subroutine zgeql2 (m, n, a, lda, tau, work, info)
ZGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
Detailed Description
Function Documentation
subroutine cgeql2 (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info)
CGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
CGEQL2 computes a QL factorization of a complex m by n matrix A: A = Q * L.
- Parameters
M
M is INTEGER The number of rows of the matrix A. M >= 0.
N
N is INTEGER The number of columns of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the m by n lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details).
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).
WORK
WORK is COMPLEX array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i).
Definition at line 122 of file cgeql2.f.
subroutine dgeql2 (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info)
DGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
DGEQL2 computes a QL factorization of a real m by n matrix A: A = Q * L.
- Parameters
M
M is INTEGER The number of rows of the matrix A. M >= 0.
N
N is INTEGER The number of columns of the matrix A. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the m by n lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details).
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).
WORK
WORK is DOUBLE PRECISION array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i).
Definition at line 122 of file dgeql2.f.
subroutine sgeql2 (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer info)
SGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
SGEQL2 computes a QL factorization of a real m by n matrix A: A = Q * L.
- Parameters
M
M is INTEGER The number of rows of the matrix A. M >= 0.
N
N is INTEGER The number of columns of the matrix A. N >= 0.
A
A is REAL array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the m by n lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details).
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).
WORK
WORK is REAL array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i).
Definition at line 122 of file sgeql2.f.
subroutine zgeql2 (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)
ZGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
ZGEQL2 computes a QL factorization of a complex m by n matrix A: A = Q * L.
- Parameters
M
M is INTEGER The number of rows of the matrix A. M >= 0.
N
N is INTEGER The number of columns of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the m by n lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details).
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).
WORK
WORK is COMPLEX*16 array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i).
Definition at line 122 of file zgeql2.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.