geequ - Man Page

geequ: equilibration

Synopsis

Functions

subroutine cgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
CGEEQU
subroutine dgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
DGEEQU
subroutine sgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
SGEEQU
subroutine zgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
ZGEEQU

Detailed Description

Function Documentation

subroutine cgeequ (integer m, integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) r, real, dimension( * ) c, real rowcnd, real colcnd, real amax, integer info)

CGEEQU  

Purpose:

 CGEEQU computes row and column scalings intended to equilibrate an
 M-by-N matrix A and reduce its condition number.  R returns the row
 scale factors and C the column scale factors, chosen to try to make
 the largest element in each row and column of the matrix B with
 elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

 R(i) and C(j) are restricted to be between SMLNUM = smallest safe
 number and BIGNUM = largest safe number.  Use of these scaling
 factors is not guaranteed to reduce the condition number of A but
 works well in practice.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
          The M-by-N matrix whose equilibration factors are
          to be computed.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

R

          R is REAL array, dimension (M)
          If INFO = 0 or INFO > M, R contains the row scale factors
          for A.

C

          C is REAL array, dimension (N)
          If INFO = 0,  C contains the column scale factors for A.

ROWCND

          ROWCND is REAL
          If INFO = 0 or INFO > M, ROWCND contains the ratio of the
          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and
          AMAX is neither too large nor too small, it is not worth
          scaling by R.

COLCND

          COLCND is REAL
          If INFO = 0, COLCND contains the ratio of the smallest
          C(i) to the largest C(i).  If COLCND >= 0.1, it is not
          worth scaling by C.

AMAX

          AMAX is REAL
          Absolute value of largest matrix element.  If AMAX is very
          close to overflow or very close to underflow, the matrix
          should be scaled.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i,  and i is
                <= M:  the i-th row of A is exactly zero
                >  M:  the (i-M)-th column of A is exactly zero
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 138 of file cgeequ.f.

subroutine dgeequ (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) r, double precision, dimension( * ) c, double precision rowcnd, double precision colcnd, double precision amax, integer info)

DGEEQU  

Purpose:

 DGEEQU computes row and column scalings intended to equilibrate an
 M-by-N matrix A and reduce its condition number.  R returns the row
 scale factors and C the column scale factors, chosen to try to make
 the largest element in each row and column of the matrix B with
 elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

 R(i) and C(j) are restricted to be between SMLNUM = smallest safe
 number and BIGNUM = largest safe number.  Use of these scaling
 factors is not guaranteed to reduce the condition number of A but
 works well in practice.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          The M-by-N matrix whose equilibration factors are
          to be computed.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

R

          R is DOUBLE PRECISION array, dimension (M)
          If INFO = 0 or INFO > M, R contains the row scale factors
          for A.

C

          C is DOUBLE PRECISION array, dimension (N)
          If INFO = 0,  C contains the column scale factors for A.

ROWCND

          ROWCND is DOUBLE PRECISION
          If INFO = 0 or INFO > M, ROWCND contains the ratio of the
          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and
          AMAX is neither too large nor too small, it is not worth
          scaling by R.

COLCND

          COLCND is DOUBLE PRECISION
          If INFO = 0, COLCND contains the ratio of the smallest
          C(i) to the largest C(i).  If COLCND >= 0.1, it is not
          worth scaling by C.

AMAX

          AMAX is DOUBLE PRECISION
          Absolute value of largest matrix element.  If AMAX is very
          close to overflow or very close to underflow, the matrix
          should be scaled.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i,  and i is
                <= M:  the i-th row of A is exactly zero
                >  M:  the (i-M)-th column of A is exactly zero
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 137 of file dgeequ.f.

subroutine sgeequ (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) r, real, dimension( * ) c, real rowcnd, real colcnd, real amax, integer info)

SGEEQU  

Purpose:

 SGEEQU computes row and column scalings intended to equilibrate an
 M-by-N matrix A and reduce its condition number.  R returns the row
 scale factors and C the column scale factors, chosen to try to make
 the largest element in each row and column of the matrix B with
 elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

 R(i) and C(j) are restricted to be between SMLNUM = smallest safe
 number and BIGNUM = largest safe number.  Use of these scaling
 factors is not guaranteed to reduce the condition number of A but
 works well in practice.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is REAL array, dimension (LDA,N)
          The M-by-N matrix whose equilibration factors are
          to be computed.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

R

          R is REAL array, dimension (M)
          If INFO = 0 or INFO > M, R contains the row scale factors
          for A.

C

          C is REAL array, dimension (N)
          If INFO = 0,  C contains the column scale factors for A.

ROWCND

          ROWCND is REAL
          If INFO = 0 or INFO > M, ROWCND contains the ratio of the
          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and
          AMAX is neither too large nor too small, it is not worth
          scaling by R.

COLCND

          COLCND is REAL
          If INFO = 0, COLCND contains the ratio of the smallest
          C(i) to the largest C(i).  If COLCND >= 0.1, it is not
          worth scaling by C.

AMAX

          AMAX is REAL
          Absolute value of largest matrix element.  If AMAX is very
          close to overflow or very close to underflow, the matrix
          should be scaled.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i,  and i is
                <= M:  the i-th row of A is exactly zero
                >  M:  the (i-M)-th column of A is exactly zero
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 137 of file sgeequ.f.

subroutine zgeequ (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) r, double precision, dimension( * ) c, double precision rowcnd, double precision colcnd, double precision amax, integer info)

ZGEEQU  

Purpose:

 ZGEEQU computes row and column scalings intended to equilibrate an
 M-by-N matrix A and reduce its condition number.  R returns the row
 scale factors and C the column scale factors, chosen to try to make
 the largest element in each row and column of the matrix B with
 elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.

 R(i) and C(j) are restricted to be between SMLNUM = smallest safe
 number and BIGNUM = largest safe number.  Use of these scaling
 factors is not guaranteed to reduce the condition number of A but
 works well in practice.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          The M-by-N matrix whose equilibration factors are
          to be computed.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

R

          R is DOUBLE PRECISION array, dimension (M)
          If INFO = 0 or INFO > M, R contains the row scale factors
          for A.

C

          C is DOUBLE PRECISION array, dimension (N)
          If INFO = 0,  C contains the column scale factors for A.

ROWCND

          ROWCND is DOUBLE PRECISION
          If INFO = 0 or INFO > M, ROWCND contains the ratio of the
          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and
          AMAX is neither too large nor too small, it is not worth
          scaling by R.

COLCND

          COLCND is DOUBLE PRECISION
          If INFO = 0, COLCND contains the ratio of the smallest
          C(i) to the largest C(i).  If COLCND >= 0.1, it is not
          worth scaling by C.

AMAX

          AMAX is DOUBLE PRECISION
          Absolute value of largest matrix element.  If AMAX is very
          close to overflow or very close to underflow, the matrix
          should be scaled.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i,  and i is
                <= M:  the i-th row of A is exactly zero
                >  M:  the (i-M)-th column of A is exactly zero
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 138 of file zgeequ.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK