gbtrs - Man Page
gbtrs: triangular solve using factor
Synopsis
Functions
subroutine cgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
CGBTRS
subroutine dgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
DGBTRS
subroutine sgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
SGBTRS
subroutine zgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
ZGBTRS
Detailed Description
Function Documentation
subroutine cgbtrs (character trans, integer n, integer kl, integer ku, integer nrhs, complex, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, integer info)
CGBTRS
Purpose:
CGBTRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general band matrix A using the LU factorization computed by CGBTRF.
- Parameters
TRANS
TRANS is CHARACTER*1 Specifies the form of the system of equations. = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)
N
N is INTEGER The order of the matrix A. N >= 0.
KL
KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.
KU
KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
AB
AB is COMPLEX array, dimension (LDAB,N) Details of the LU factorization of the band matrix A, as computed by CGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV
IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).
B
B is COMPLEX array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 136 of file cgbtrs.f.
subroutine dgbtrs (character trans, integer n, integer kl, integer ku, integer nrhs, double precision, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, integer info)
DGBTRS
Purpose:
DGBTRS solves a system of linear equations A * X = B or A**T * X = B with a general band matrix A using the LU factorization computed by DGBTRF.
- Parameters
TRANS
TRANS is CHARACTER*1 Specifies the form of the system of equations. = 'N': A * X = B (No transpose) = 'T': A**T* X = B (Transpose) = 'C': A**T* X = B (Conjugate transpose = Transpose)
N
N is INTEGER The order of the matrix A. N >= 0.
KL
KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.
KU
KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
AB
AB is DOUBLE PRECISION array, dimension (LDAB,N) Details of the LU factorization of the band matrix A, as computed by DGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV
IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 136 of file dgbtrs.f.
subroutine sgbtrs (character trans, integer n, integer kl, integer ku, integer nrhs, real, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, integer info)
SGBTRS
Purpose:
SGBTRS solves a system of linear equations A * X = B or A**T * X = B with a general band matrix A using the LU factorization computed by SGBTRF.
- Parameters
TRANS
TRANS is CHARACTER*1 Specifies the form of the system of equations. = 'N': A * X = B (No transpose) = 'T': A**T* X = B (Transpose) = 'C': A**T* X = B (Conjugate transpose = Transpose)
N
N is INTEGER The order of the matrix A. N >= 0.
KL
KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.
KU
KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
AB
AB is REAL array, dimension (LDAB,N) Details of the LU factorization of the band matrix A, as computed by SGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV
IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).
B
B is REAL array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 136 of file sgbtrs.f.
subroutine zgbtrs (character trans, integer n, integer kl, integer ku, integer nrhs, complex*16, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)
ZGBTRS
Purpose:
ZGBTRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general band matrix A using the LU factorization computed by ZGBTRF.
- Parameters
TRANS
TRANS is CHARACTER*1 Specifies the form of the system of equations. = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)
N
N is INTEGER The order of the matrix A. N >= 0.
KL
KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.
KU
KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB,N) Details of the LU factorization of the band matrix A, as computed by ZGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV
IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).
B
B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 136 of file zgbtrs.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.