gbtrs - Man Page

gbtrs: triangular solve using factor

Synopsis

Functions

subroutine cgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
CGBTRS
subroutine dgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
DGBTRS
subroutine sgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
SGBTRS
subroutine zgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
ZGBTRS

Detailed Description

Function Documentation

subroutine cgbtrs (character trans, integer n, integer kl, integer ku, integer nrhs, complex, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, integer info)

CGBTRS  

Purpose:

 CGBTRS solves a system of linear equations
    A * X = B,  A**T * X = B,  or  A**H * X = B
 with a general band matrix A using the LU factorization computed
 by CGBTRF.
Parameters

TRANS

          TRANS is CHARACTER*1
          Specifies the form of the system of equations.
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose)

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

KL

          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.

KU

          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

AB

          AB is COMPLEX array, dimension (LDAB,N)
          Details of the LU factorization of the band matrix A, as
          computed by CGBTRF.  U is stored as an upper triangular band
          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
          the multipliers used during the factorization are stored in
          rows KL+KU+2 to 2*KL+KU+1.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.

IPIV

          IPIV is INTEGER array, dimension (N)
          The pivot indices; for 1 <= i <= N, row i of the matrix was
          interchanged with row IPIV(i).

B

          B is COMPLEX array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, the solution matrix X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 136 of file cgbtrs.f.

subroutine dgbtrs (character trans, integer n, integer kl, integer ku, integer nrhs, double precision, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, integer info)

DGBTRS  

Purpose:

 DGBTRS solves a system of linear equations
    A * X = B  or  A**T * X = B
 with a general band matrix A using the LU factorization computed
 by DGBTRF.
Parameters

TRANS

          TRANS is CHARACTER*1
          Specifies the form of the system of equations.
          = 'N':  A * X = B  (No transpose)
          = 'T':  A**T* X = B  (Transpose)
          = 'C':  A**T* X = B  (Conjugate transpose = Transpose)

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

KL

          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.

KU

          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

AB

          AB is DOUBLE PRECISION array, dimension (LDAB,N)
          Details of the LU factorization of the band matrix A, as
          computed by DGBTRF.  U is stored as an upper triangular band
          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
          the multipliers used during the factorization are stored in
          rows KL+KU+2 to 2*KL+KU+1.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.

IPIV

          IPIV is INTEGER array, dimension (N)
          The pivot indices; for 1 <= i <= N, row i of the matrix was
          interchanged with row IPIV(i).

B

          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, the solution matrix X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 136 of file dgbtrs.f.

subroutine sgbtrs (character trans, integer n, integer kl, integer ku, integer nrhs, real, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, integer info)

SGBTRS  

Purpose:

 SGBTRS solves a system of linear equations
    A * X = B  or  A**T * X = B
 with a general band matrix A using the LU factorization computed
 by SGBTRF.
Parameters

TRANS

          TRANS is CHARACTER*1
          Specifies the form of the system of equations.
          = 'N':  A * X = B  (No transpose)
          = 'T':  A**T* X = B  (Transpose)
          = 'C':  A**T* X = B  (Conjugate transpose = Transpose)

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

KL

          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.

KU

          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

AB

          AB is REAL array, dimension (LDAB,N)
          Details of the LU factorization of the band matrix A, as
          computed by SGBTRF.  U is stored as an upper triangular band
          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
          the multipliers used during the factorization are stored in
          rows KL+KU+2 to 2*KL+KU+1.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.

IPIV

          IPIV is INTEGER array, dimension (N)
          The pivot indices; for 1 <= i <= N, row i of the matrix was
          interchanged with row IPIV(i).

B

          B is REAL array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, the solution matrix X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 136 of file sgbtrs.f.

subroutine zgbtrs (character trans, integer n, integer kl, integer ku, integer nrhs, complex*16, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)

ZGBTRS  

Purpose:

 ZGBTRS solves a system of linear equations
    A * X = B,  A**T * X = B,  or  A**H * X = B
 with a general band matrix A using the LU factorization computed
 by ZGBTRF.
Parameters

TRANS

          TRANS is CHARACTER*1
          Specifies the form of the system of equations.
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose)

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

KL

          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.

KU

          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

AB

          AB is COMPLEX*16 array, dimension (LDAB,N)
          Details of the LU factorization of the band matrix A, as
          computed by ZGBTRF.  U is stored as an upper triangular band
          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
          the multipliers used during the factorization are stored in
          rows KL+KU+2 to 2*KL+KU+1.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.

IPIV

          IPIV is INTEGER array, dimension (N)
          The pivot indices; for 1 <= i <= N, row i of the matrix was
          interchanged with row IPIV(i).

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, the solution matrix X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 136 of file zgbtrs.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK