cdawson - Man Page
Dawson's integral
Synopsis
#include <cerf.h>
double _Complex cdawson ( double _Complex z );
double dawson ( double x );
Description
The function cdawson returns Dawson's integral D(z) = exp(-z^2) integral from 0 to z exp(t^2) dt = sqrt(pi)/2 * exp(-z^2) * erfi(z).
For function dawson takes a real argument x, and returns the real result D(x).
See Also
The computation of D(z) is based on Faddeeva's function w_of_z(3); to compute D(x), the imaginary part im_w_of_x(3) is used.
Other complex error functions: w_of_z(3), voigt(3), cerf(3), erfcx(3), erfi(3).
Homepage: http://apps.jcns.fz-juelich.de/libcerf
Authors
Steven G. Johnson, http://math.mit.edu/~stevenj,
Massachusetts Institute of Technology,
researched the numerics, and implemented the Faddeeva function.
Joachim Wuttke <j.wuttke@fz-juelich.de>, Forschungszentrum Juelich,
reorganized the code into a library, and wrote this man page.
Please report bugs to the authors.
Copying
Copyright (c) 2012 Massachusetts Institute of Technology
Copyright (c) 2013 Forschungszentrum Juelich GmbH
Software: MIT License.
This documentation: Creative Commons Attribution Share Alike.
Referenced By
cerf(3), cerfcx(3), cerfi(3), voigt(3), w_of_z(3).
The man page dawson(3) is an alias of cdawson(3).