catanh - Man Page
complex arc tangents hyperbolic
Library
Math library (libm, -lm)
Synopsis
#include <complex.h> double complex catanh(double complex z); float complex catanhf(float complex z); long double complex catanhl(long double complex z);
Description
These functions calculate the complex arc hyperbolic tangent of z. If y = catanh(z), then z = ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2].
One has:
catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))
Attributes
For an explanation of the terms used in this section, see attributes(7).
Interface | Attribute | Value |
---|---|---|
catanh(), catanhf(), catanhl() | Thread safety | MT-Safe |
Standards
C11, POSIX.1-2008.
History
glibc 2.1. C99, POSIX.1-2001.
Examples
/* Link with "-lm" */ #include <complex.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> int main(int argc, char *argv[]) { double complex z, c, f; if (argc != 3) { fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]); exit(EXIT_FAILURE); } z = atof(argv[1]) + atof(argv[2]) * I; c = catanh(z); printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c)); f = 0.5 * (clog(1 + z) - clog(1 - z)); printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f)); exit(EXIT_SUCCESS); }
See Also
Referenced By
atanh(3), complex(7), ctanh(3).
The man pages catanhf(3) and catanhl(3) are aliases of catanh(3).
2024-06-15 Linux man-pages 6.9.1