tend-sim - Man Page
simulate DW images from a tensor field
Synopsis
tend sim [-old] [-sigma <sigma>] [-seed <seed>] [-g <grad list>] [-B <B matrix>] -r <reference field> [-i <tensor field>] [-b <b>] [-kvp] [-t <type>] [-o <nout>]
Description
Simulate DW images from a tensor field. The output will be in the same form as the input to tend-estim(1). The B-matrices (“-B”) can be the output from tend-bmat(1), or the gradients can be given directly (“-g”); one of these is required. Note that the input tensor field (“-i”) is the basis of the output per-axis fields and image orientation. NOTE: this includes the measurement frame used in the input tensor field, which implies that the given gradients or B-matrices are already expressed in that measurement frame.
Options
- -old
don’t use the new tenEstimateContext functionality
- -sigma <sigma>
Rician noise parameter (float) default: “0.0”
- -seed <seed>
seed value for RNG which creates noise (int) default: “42”
- -g <grad list>
gradient list, one row per diffusion-weighted image
- -B <B matrix>
B matrix, one row per diffusion-weighted image. Using this overrides the gradient list input via “-g”
- -r <reference field>
reference anatomical scan, with no diffusion weighting
- -i <tensor field>
input diffusion tensor field
- -b <b>
b value for simulated scan (float) default: “1000”
- -kvp
generate key/value pairs in the NRRD header corresponding to the input b-value and gradients or B-matrices.
- -t <type>
output type of DWIs; default: “float”
- -o <nout>
output image (floating point) (string) default: “-”
See Also
Referenced By
tend(1), tend-bmat(1), tend-estim(1).