gesolve - Man Page
eigensolver for generalized eigenvalue problems
Synopsis
gesolve matrix_a_filename matrix_b_filename evalues_filename evectors_filename residuals_filename iters_filename [options]
Description
This program inputs the matrix data from matrix_a_filename matrix_b_filename, and solves the generalized eigenvalue problem A*x = l*B*x with the solver specified by options. It outputs the specified number of eigenvalues, the number of which is given by option -ss, to evalues_filename and the associated eigenvectors, residual norms, and numbers of iterations to evectors_filename, residuals_filename, and iters_filename respectively in the extended Matrix Market format (see Appendix of Lis User Guide). Both the Matrix Market format and the Harwell-Boeing format are supported for the matrix filenames.
Options
The following options are supported:
- -e eigensolver
The following options are supported for eigensolver:
- -e {gpi|9}
Generalized Power
- -e {gii|10}
Generalized Inverse
- -e {grqi|11}
Generalized Rayleigh Quotient
- -e {gcg|12}
Generalized CR
- -e {gcr|13}
Generalized CR
- -e {gsi|14}
Generalized Subspace
- -ss [1]
The size of the subspace
- -e {gli|15}
Generalized Lanczos
- -ss [1]
The size of the subspace
- -e {gai|16}
Generalized Arnoldi
- -ss [1]
The size of the subspace
- -i linear solver
The following options are supported for inner linear solver:
- -i {cg|1}
CG
- -i {bicg|2}
BiCG
- -i {cgs|3}
CGS
- -i {bicgstab|4}
BiCGSTAB
- -i {bicgstabl|5}
BiCGSTAB(l)
- -ell [2]
The degree l
- -i {gpbicg|6}
GPBiCG
- -i {tfqmr|7}
TFQMR
- -i {orthomin|8}
Orthomin(m)
- -restart [40]
The restart value m
- -i {gmres|9}
GMRES(m)
- -restart [40]
The restart value m
- -i {jacobi|10}
Jacobi
- -i {gs|11}
Gauss-Seidel
- -i {sor|12}
SOR
- -omega [1.9]
The relaxation coefficient omega (0<omega<2)
- -i {bicgsafe|13}
BiCGSafe
- -i {cr|14}
CR
- -i {bicr|15}
BiCR
- -i {crs|16}
CRS
- -i {bicrstab|17}
BiCRSTAB
- -i {gpbicr|18}
GPBiCR
- -i {bicrsafe|19}
BiCRSafe
- -i {fgmres|20}
FGMRES(m)
- -restart [40]
The restart value m
- -i {idrs|21}
IDR(s)
- -irestart [2]
The restart value s
- -i {idr1|22}
IDR(1)
- -i {minres|23}
MINRES
- -i {cocg|24}
COCG
- -i {cocr|25}
COCR
- -p preconditioner
The following options are supported for preconditioner:
- -p {none|0}
None
- -p {jacobi|1}
Jacobi
- -p {ilu|2}
ILU(k)
- -ilu_fill [0]
The fill level k
- -p {ssor|3}
SSOR
- -ssor_omega [1.0]
The relaxation coefficient omega (0<omega<2)
- -p {hybrid|4}
Hybrid
- -hybrid_i [sor]
The linear solver
- -hybrid_maxiter [25]
The maximum number of the iterations
- -hybrid_tol [1.0e-3]
The convergence criterion
- -hybrid_omega [1.5]
The relaxation coefficient omega of the SOR (0<omega<2)
- -hybrid_ell [2]
The degree l of the BiCGSTAB(l)
- -hybrid_restart [40]
The restart values of the GMRES and Orthomin
- -p {is|5}
I+S
- -is_alpha [1.0]
The parameter alpha of I+alpha*S(m)
- -is_m [3]
The parameter m of I+alpha*S(m)
- -p {sainv|6}
SAINV
- -sainv_drop [0.05]
The drop criterion
- -p {saamg|7}
SA-AMG
- -saamg_unsym [false]
Select the unsymmetric version (The matrix structure must be symmetric)
- -saamg_theta [0.05|0.12]
The drop criterion
- -p {iluc|8}
Crout ILU
- -iluc_drop [0.05]
The drop criterion
- -iluc_rate [5.0]
The ration of maximum fill-in
- -p {ilut|9}
ILUT
- -ilut_drop [0.05]
The drop criterion
- -ilut_rate [5.0]
The ration of maximum fill-in
- -adds true
Additive Schwarz
- -adds_iter [1]
The number of the iteration
Other Options for eigensolver:
- -emaxiter [1000]
The maximum number of the iterations
- -etol [1.0e-12]
The convergence criterion
- -eprint [0]
The output of the residual history
- -eprint {none|0}
None
- -eprint {mem|1}
Save the residual history
- -eprint {out|2}
Output it to the standard output
- -eprint {all|3}
Save the residual history and output it to the standard output
- -ige [gii]
The inner eigensolver used in generalized Subspace, generalized Lanczos, and generalized Arnoldi
- -shift [0.0]
The amount of the shift
- -initx_ones [true]
The behavior of the initial vector x_0
- -initx_ones {false|0}
Given values
- -initx_ones {true|1}
All values are set to 1
- -omp_num_threads [t]
The number of the threads (t represents the maximum number of the threads)
- -estorage [0]
The matrix storage format
- -estorage_block [2]
The block size of the BSR and BSC formats
- -ef [0]
The precision of the eigensolver
- -ef {double|0}
Double precision
- -ef {quad|1}
Double-double (quadruple) precision
Other options for inner linear solver:
- -maxiter [1000]
The maximum number of the iterations
- -tol [1.0e-12]
The convergence criterion
- -print [0]
The output of the residual history
- -print {none|0}
None
- -print {mem|1}
Save the residual history
- -print {out|2}
Output it to the standard output
- -print {all|3}
Save the residual history and output it to the standard output
- -scale [0]
The scaling
- -scale {none|0}
No scaling
- -scale {jacobi|1}
The Jacobi scaling
- -scale {symm_diag|2}
The diagonal scaling
- -initx_zeros [true]
The behavior of the initial vector x_0
- -initx_zero {false|0}
Given values
- -initx_zero {true|1}
All values are set to 0
- -omp_num_threads [t]
The number of the threads (t represents the maximum number of the threads)
- -storage [0]
The matrix storage format
- -storage_block [2]
The block size of the BSR and BSC formats
- -f [0]
The precision of the linear solver
- -f {double|0}
Double precision
- -f {quad|1}
Double-double (quadruple) precision
See Lis User Guide for full description.
Exit Status
The following exit values are returned:
- 0
The process is normally terminated
- unspecified
An error occurred
See Also
lis(3), lsolve(1), hpcg_kernel(1), hpcg_spmvtest(1), spmvtest1(1), spmvtest2(1), spmvtest2b(1), spmvtest3(1), spmvtest3b(1), spmvtest4(1), spmvtest5(1)