datamash - Man Page
command-line calculations
Examples (TL;DR)
- Get max, min, mean and median of a single column of numbers:
seq 3 | datamash max 1 min 1 mean 1 median 1
- Get the mean of a single column of float numbers (floats must use "," and not "."):
echo -e '1.0\n2.5\n3.1\n4.3\n5.6\n5.7' | tr '.' ',' | datamash mean 1
- Get the mean of a single column of numbers with a given decimal precision:
echo -e '1\n2\n3\n4\n5\n5' | datamash -R number_of_decimals_wanted mean 1
- Get the mean of a single column of numbers ignoring "Na" and "NaN" (literal) strings:
echo -e '1\n2\nNa\n3\nNaN' | datamash --narm mean 1
Synopsis
datamash [OPTION] op [fld] [op fld ...]
Description
Performs numeric/string operations on input from stdin.
'op' is the operation to perform. If a primary operation is used, it must be listed first, optionally followed by other operations. 'fld' is the input field to use. 'fld' can be a number (1=first field), or a field name when using the -H or --header-in options. Multiple fields can be listed with a comma (e.g. 1,6,8). A range of fields can be listed with a dash (e.g. 2-8). Use colons for operations which require a pair of fields (e.g. 'pcov 2:6').
Primary operations
groupby, crosstab, transpose, reverse, check
Line-Filtering operations
rmdup
Per-Line operations
base64, debase64, md5, sha1, sha224, sha256, sha384, sha512, bin, strbin, round, floor, ceil, trunc, frac, dirname, basename, barename, extname, getnum, cut
Numeric Grouping operations
sum, min, max, absmin, absmax, range
Textual/Numeric Grouping operations
count, first, last, rand, unique, collapse, countunique
Statistical Grouping operations
mean, geomean, harmmean, trimmean, median, q1, q3, iqr, perc, mode, antimode, pstdev, sstdev, pvar, svar, ms, rms, mad, madraw, pskew, sskew, pkurt, skurt, dpo, jarque, scov, pcov, spearson, ppearson
Options
Grouping Options
- -C, --skip-comments
skip comment lines (starting with '#' or ';' and optional whitespace)
- -f, --full
print entire input line before op results (default: print only the grouped keys)
This option is only sensible for linewise operations. Other uses are deprecated and will be removed in a future version of GNU Datamash.
- -g, --group=X[,Y,Z]
group via fields X,[Y,Z]; equivalent to primary operation 'groupby'
- --header-in
first input line is column headers
- --header-out
print column headers as first line
- -H, --headers
same as '--header-in --header-out'
- -i, --ignore-case
ignore upper/lower case when comparing text; this affects grouping, and string operations
- -s, --sort
sort the input before grouping; this removes the need to manually pipe the input through 'sort'
- -c, --collapse-delimiter=X
use X to separate elements in collapse and unique lists (default: comma)
File Operation Options
- --no-strict
allow lines with varying number of fields
- --filler=X
fill missing values with X (default N/A)
General Options
- -t, --field-separator=X
use X instead of TAB as field delimiter
- --format=FORMAT
print numeric values with printf style floating-point FORMAT.
- --output-delimiter=X
use X instead as output field delimiter (default: use same delimiter as -t/-W)
- --narm
skip NA/NaN values
- -R, --round=N
round numeric output to N decimal places
- -W, --whitespace
use whitespace (one or more spaces and/or tabs) for field delimiters
- -z, --zero-terminated
end lines with 0 byte, not newline
- --sort-cmd=/path/to/sort
Alternative sort(1) to use.
- --help
display this help and exit
- --version
output version information and exit
Available Operations
Primary Operations
Primary operations affect the way the file is processed. If used, the primary operation must be listed first. If primary operation is not listed the entire file is processed - either line-by-line (for 'per-line' operations) or all lines as one group (for grouping operations). See Examples section below.
- groupby X,Y,... op fld ...
group the file by given fields. Equivalent to option '-g'. For each group perform operation op on field fld.
- crosstab X,Y [op fld ...]
cross-tabulate a file by two fields (cross-tabulation is also known as pivot tables). If no operation is specified, counts how many incidents exist of X,Y.
- transpose
transpose rows, columns of the input file
- reverse
reverse field order in each line
- check [N lines] [N fields]
verify the input file has same number of fields in all lines, or the expected number of lines/fields. number of lines and fields are printed to STDOUT. Exits with non-zero code and prints the offending line if there's a mismatch in the number of lines/ fields.
Line-Filtering operations
- rmdup
remove lines with duplicated key value
Per-Line operations
- base64
Encode the field as base64
- debase64
Decode the field as base64, exit with error if invalid base64 string
- md5/sha1/sha224/sha256/sha384/sha512
Calculate md5/sha1/sha224/sha256/sha384/sha512 hash of the field value
- bin[:BUCKET-SIZE]
bin numeric values into buckets of size BUCKET-SIZE (defaults to 100).
- strbin[:BUCKET-SIZE]
hashes the input and returns a numeric integer value between zero and BUCKET-SIZE (defaults to 10).
- round/floor/ceil/trunc/frac
numeric rounding operations. round (round half away from zero), floor (round down), ceil (ceiling, round up), trunc (truncate, round towards zero), frac (fraction, return fraction part of a decimal-point value).
- dirname/basename
extract the directory name and the base file name from a given string (same as to dirname(1) and basename(1)).
- extname
extract the extension of the file name (without the '.').
- barename
extract the base file name without the extension.
- getnum[:TYPE]
extract a number from the field. TYPE is optional single letter option n/i/d/p/h/o (see examples below).
- cut/echo
copy input field to output field (similar to cut(1)). The echo command is simply an alias to cut.
Numeric Grouping operations
- sum
sum the of values
- min
minimum value
- max
maximum value
- absmin
minimum of the absolute values
- absmax
maximum of the absolute values
- range
the values range (max-min)
Textual/Numeric Grouping operations
- count
count number of elements in the group
- first
the first value of the group
- last
the last value of the group
- rand
one random value from the group
- unique/uniq
comma-separated sorted list of unique values The uniq command is simply an alias to unique.
- collapse
comma-separated list of all input values
- countunique
number of unique/distinct values
Statistical Grouping operations
A p/s prefix indicates the variant: population or sample. Typically, the sample variant is equivalent with GNU R's internal functions (e.g datamash's sstdev operation is equivalent to R's sd() function).
- mean
mean of the values
- geomean
geometric mean of the values
- harmmean
harmonic mean of the values
- trimmean[:PERCENT]
trimmed mean of the values. PERCENT should be between 0 and 0.5. (trimmean:0 is equivalent to mean. trimmean:0.5 is equivalent to median).
- ms
mean square of the values
- rms
root mean square of the values
- median
median value
- q1
1st quartile value
- q3
3rd quartile value
- iqr
inter-quartile range
- perc[:PERCENTILE]
percentile value PERCENTILE (defaults to 95).
- mode
mode value (most common value)
- antimode
anti-mode value (least common value)
- pstdev/sstdev
population/sample standard deviation
- pvar/svar
population/sample variance
- mad
median absolute deviation, scaled by constant 1.4826 for normal distributions
- madraw
median absolute deviation, unscaled
- pskew/sskew
skewness of the group
values x reported by 'sskew' and 'pskew' operations:x > 0 - positively skewed / skewed right 0 > x - negatively skewed / skewed left x > 1 - highly skewed right 1 > x > 0.5 - moderately skewed right 0.5 > x > -0.5 - approximately symmetric -0.5 > x > -1 - moderately skewed left -1 > x - highly skewed left
- pkurt/skurt
excess Kurtosis of the group
- jarque/dpo
p-value of the Jarque-Beta (jarque) and D'Agostino-Pearson Omnibus (dpo) tests for normality:
null hypothesis is normality;
low p-Values indicate non-normal data;
high p-Values indicate null-hypothesis cannot be rejected.- pcov/scov [X:Y]
covariance of fields X and Y
- ppearson/spearson [X:Y]
Pearson product-moment correlation coefficient [Pearson's R] of fields X and Y
Examples
Basic usage
Print the sum and the mean of values from field 1:
$ seq 10 | datamash sum 1 mean 1 55 5.5
Group input based on field 1, and sum values (per group) on field 2:
$ cat example.txt A 10 A 5 B 9 B 11 $ datamash -g 1 sum 2 < example.txt A 15 B 20 $ datamash groupby 1 sum 2 < example.txt A 15 B 20
Unsorted input must be sorted (with '-s'):
$ cat example.txt A 10 C 4 B 9 C 1 A 5 B 11 $ datamash -s -g1 sum 2 < example.txt A 15 B 20 C 5
Which is equivalent to:
$ cat example.txt | sort -k1,1 | datamash -g 1 sum 2
Header lines
Use -H (--headers) if the input file has a header line:
# Given a file with student name, field, test score... $ head -n5 scores_h.txt Name Major Score Shawn Engineering 47 Caleb Business 87 Christian Business 88 Derek Arts 60 # Calculate the mean and standard deviation for each major $ datamash --sort --headers --group 2 mean 3 pstdev 3 < scores_h.txt (or use short form) $ datamash -sH -g2 mean 3 pstdev 3 < scores_h.txt (or use named fields) $ datamash -sH -g Major mean Score pstdev Score < scores_h.txt GroupBy(Major) mean(Score) pstdev(Score) Arts 68.9 10.1 Business 87.3 4.9 Engineering 66.5 19.1 Health-Medicine 90.6 8.8 Life-Sciences 55.3 19.7 Social-Sciences 60.2 16.6
Field names must be escaped with a backslash if they start with a digit or contain special characters (dash/minus, colons, commas). Note the interplay between escaping with backslash and shell quoting. The following equivalent command sum the values of a field named "FOO-BAR":
$ datamash -H sum FOO\\-BAR < input.txt $ datamash -H sum 'FOO\-BAR' < input.txt $ datamash -H sum "FOO\\-BAR" < input.txt
Skipping comment lines
Use -C (--skip-comments) to skip lines starting with '#' or ';' characters (and optional whitespace before them):
$ cat in.txt #foo 3 bar 5 ;baz 7 $ datamash sum 2 < in.txt 15 $ datamash -C sum 2 < in.txt 5
Multiple fields
Use comma or dash to specify multiple fields. The following are equivalent:
$ seq 9 | paste - - - 1 2 3 4 5 6 7 8 9 $ seq 9 | paste - - - | datamash sum 1 sum 2 sum 3 12 15 18 $ seq 9 | paste - - - | datamash sum 1,2,3 12 15 18 $ seq 9 | paste - - - | datamash sum 1-3 12 15 18
Rounding
The following demonstrate the different rounding operations:
$ ( echo X ; seq -1.25 0.25 1.25 ) \ | datamash --full -H round 1 ceil 1 floor 1 trunc 1 frac 1 X round(X) ceil(X) floor(X) trunc(X) frac(X) -1.25 -1 -1 -2 -1 -0.25 -1.00 -1 -1 -1 -1 0 -0.75 -1 0 -1 0 -0.75 -0.50 -1 0 -1 0 -0.5 -0.25 0 0 -1 0 -0.25 0.00 0 0 0 0 0 0.25 0 1 0 0 0.25 0.50 1 1 0 0 0.5 0.75 1 1 0 0 0.75 1.00 1 1 1 1 0 1.25 1 2 1 1 0.25
Reversing fields
$ seq 6 | paste - - | datamash reverse 2 1 4 3 6 5
Transposing a file
$ seq 6 | paste - - | datamash transpose 1 3 5 2 4 6
Removing Duplicated lines
Remove lines with duplicate key value from field 1 (Unlike first,last operations, rmdup is much faster and does not require sorting the file with -s):
# Given a list of files and sample IDs: $ cat INPUT SampleID File 2 cc.txt 3 dd.txt 1 ab.txt 2 ee.txt 3 ff.txt # Remove lines with duplicated Sample-ID (field 1): $ datamash rmdup 1 < INPUT # or use named field: $ datamash -H rmdup SampleID < INPUT SampleID File 2 cc.txt 3 dd.txt 1 ab.txt
Checksums
Calculate the sha1 hash value of each TXT file, after calculating the sha1 value of each file's content:
$ sha1sum *.txt | datamash -Wf sha1 2
Check file structure
Check the structure of the input file: ensure all lines have the same number of fields, or expected number of lines/fields:
$ seq 10 | paste - - | datamash check && echo ok || echo fail 5 lines, 2 fields ok $ seq 13 | paste - - - | datamash check && echo ok || echo fail line 4 (3 fields): 10 11 12 line 5 (2 fields): 13 datamash: check failed: line 5 has 2 fields (previous line had 3) fail $ seq 10 | paste - - | datamash check 2 fields 5 lines 5 lines, 2 fields $ seq 10 | paste - - | datamash check 4 fields line 1 (2 fields): 1 2 datamash: check failed: line 1 has 2 fields (expecting 4) $ seq 10 | paste - - | datamash check 7 lines datamash: check failed: input had 5 lines (expecting 7)
Cross-Tabulation
Cross-tabulation compares the relationship between two fields. Given the following input file:
$ cat input.txt a x 3 a y 7 b x 21 a x 40
Show cross-tabulation between the first field (a/b) and the second field (x/y) - counting how many times each pair appears (note: sorting is required):
$ datamash -s crosstab 1,2 < input.txt x y a 2 1 b 1 N/A
An optional grouping operation can be used instead of counting:
$ datamash -s crosstab 1,2 sum 3 < input.txt x y a 43 7 b 21 N/A $ datamash -s crosstab 1,2 unique 3 < input.txt x y a 3,40 7 b 21 N/A
Binning numeric values
Bin input values into buckets of size 5:
$ ( echo X ; seq -10 2.5 10 ) \ | datamash -H --full bin:5 1 X bin(X) -10.0 -10 -7.5 -10 -5.0 -5 -2.5 -5 0.0 0 2.5 0 5.0 5 7.5 5 10.0 10
Binning string values
Hash any input value into a numeric integer. A typical usage would be to split an input file into N chunks, ensuring that all values of a certain key will be stored in the same chunk:
$ cat input.txt PatientA 10 PatientB 11 PatientC 12 PatientA 14 PatientC 15
Each patient ID is hashed into a bin between 0 and 9 and printed in the last field:
$ datamash --full strbin 1 < input.txt PatientA 10 5 PatientB 11 6 PatientC 12 7 PatientA 14 5 PatientC 15 7
Splitting the input into chunks can be done with awk:
$ cat input.txt \
| datamash --full strbin 1 \
| awk '{print > $NF ".txt"}'
Extracting numbers with getnum
The 'getnum' operation extracts a numeric value from the field:
$ echo zoom-123.45xyz | datamash getnum 1 123.45 getnum accepts an optional single-letter TYPE option: getnum:n - natural numbers (positive integers, including zero) getnum:i - integers getnum:d - decimal point numbers getnum:p - positive decimal point numbers (this is the default) getnum:h - hex numbers getnum:o - octal numbers
Examples:
$ echo zoom-123.45xyz | datamash getnum 1 123.45 $ echo zoom-123.45xyz | datamash getnum:n 1 123 $ echo zoom-123.45xyz | datamash getnum:i 1 -123 $ echo zoom-123.45xyz | datamash getnum:d 1 123.45 $ echo zoom-123.45xyz | datamash getnum:p 1 -123.45 # Hex 0x123 = 291 Decimal $ echo zoom-123.45xyz | datamash getnum:h 1 291 # Octal 0123 = 83 Decimal $ echo zoom-123.45xyz | datamash getnum:o 1 83
Additional Information
See GNU Datamash Website (https://www.gnu.org/software/datamash)
Environment
- LC_NUMERIC
decimal-point character and thousands separator
Author
Written by Assaf Gordon, Tim Rice, Shawn Wagner, Erik Auerswald.
Copyright
Copyright © 2022 Assaf Gordon and Tim Rice License GPLv3+: GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>.
This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.
See Also
The full documentation for datamash is maintained as a Texinfo manual. If the info and datamash programs are properly installed at your site, the command
info datamash
should give you access to the complete manual.