certtool - Man Page
GnuTLS certificate tool
Synopsis
certtool
[-flags
] [-flag
[value]] [--option-name
[[=| ]value]]
All arguments must be options.
Description
Tool to parse and generate X.509 certificates, requests and private keys. It can be used interactively or non interactively by specifying the template command line option.
The tool accepts files or supported URIs via the --infile option. In case PIN is required for URI access you can provide it using the environment variables GNUTLS_PIN and GNUTLS_SO_PIN.
Options
- -d num, --debug=num
Enable debugging. This option takes an integer number as its argument. The value of num is constrained to being:
in the range 0 through 9999
Specifies the debug level.
- -V, --verbose
More verbose output.
- --infile=file
Input file.
- --outfile=str
Output file.
- --attime=timestamp
Perform validation at the timestamp instead of the system time.
timestamp is an instance in time encoded as Unix time or in a human
readable timestring such as "29 Feb 2004", "2004-02-29". Full documentation available at <https://www.gnu.org/software/coreutils/manual/html_node/Date-input-formats.html> or locally via info '(coreutils) date invocation'.
PKCS#7 structure options
- --p7-generate
Generate a PKCS #7 structure.
This option generates a PKCS #7 certificate container structure. To add certificates in the structure use --load-certificate and --load-crl.
- --p7-sign
Signs using a PKCS #7 structure.
This option generates a PKCS #7 structure containing a signature for the provided data from infile. The data are stored within the structure. The signer certificate has to be specified using --load-certificate and --load-privkey. The input to --load-certificate can be a list of certificates. In case of a list, the first certificate is used for signing and the other certificates are included in the structure.
- --p7-detached-sign
Signs using a detached PKCS #7 structure.
This option generates a PKCS #7 structure containing a signature for the provided data from infile. The signer certificate has to be specified using --load-certificate and --load-privkey. The input to --load-certificate can be a list of certificates. In case of a list, the first certificate is used for signing and the other certificates are included in the structure.
- --p7-include-cert, --no-p7-include-cert
The signer's certificate will be included in the cert list. The no-p7-include-cert form will disable the option. This option is enabled by default.
This options works with --p7-sign or --p7-detached-sign and will include or exclude the signer's certificate into the generated signature.
- --p7-time, --no-p7-time
Will include a timestamp in the PKCS #7 structure. The no-p7-time form will disable the option.
This option will include a timestamp in the generated signature
- --p7-show-data, --no-p7-show-data
Will show the embedded data in the PKCS #7 structure. The no-p7-show-data form will disable the option.
This option can be combined with --p7-verify or --p7-info and will display the embedded signed data in the PKCS #7 structure.
- --p7-info
Print information on a PKCS #7 structure.
- --p7-verify
Verify the provided PKCS #7 structure.
This option verifies the signed PKCS #7 structure. The certificate list to use for verification can be specified with --load-ca-certificate. When no certificate list is provided, then the system's certificate list is used. Alternatively a direct signer can be provided using --load-certificate. A key purpose can be enforced with the --verify-purpose option, and the --load-data option will utilize detached data.
- --smime-to-p7
Convert S/MIME to PKCS #7 structure.
Other options
- --generate-dh-params
Generate PKCS #3 encoded Diffie-Hellman parameters.
The will generate random parameters to be used with Diffie-Hellman key exchange. The output parameters will be in PKCS #3 format. Note that it is recommended to use the --get-dh-params option instead.
NOTE: THIS OPTION IS DEPRECATED
- --get-dh-params
List the included PKCS #3 encoded Diffie-Hellman parameters.
Returns stored DH parameters in GnuTLS. Those parameters returned are defined in RFC7919, and can be considered standard parameters for a TLS key exchange. This option is provided for old applications which require DH parameters to be specified; modern GnuTLS applications should not require them.
- --dh-info
Print information PKCS #3 encoded Diffie-Hellman parameters.
- --load-privkey=str
Loads a private key file.
This can be either a file or a PKCS #11 URL
- --load-pubkey=str
Loads a public key file.
This can be either a file or a PKCS #11 URL
- --load-request=str
Loads a certificate request file.
This option can be used with a file
- --load-certificate=str
Loads a certificate file.
This option can be used with a file
- --load-ca-privkey=str
Loads the certificate authority's private key file.
This can be either a file or a PKCS #11 URL
- --load-ca-certificate=str
Loads the certificate authority's certificate file.
This can be either a file or a PKCS #11 URL
- --load-crl=str
Loads the provided CRL.
This option can be used with a file
- --load-data=str
Loads auxiliary data.
This option can be used with a file
- --password=str
Password to use.
You can use this option to specify the password in the command line instead of reading it from the tty. Note, that the command line arguments are available for view in others in the system. Specifying password as '' is the same as specifying no password.
- --null-password
Enforce a NULL password.
This option enforces a NULL password. This is different than the empty or no password in schemas like PKCS #8.
- --empty-password
Enforce an empty password.
This option enforces an empty password. This is different than the NULL or no password in schemas like PKCS #8.
- --hex-numbers
Print big number in an easier format to parse.
- --cprint
In certain operations it prints the information in C-friendly format.
In certain operations it prints the information in C-friendly format, suitable for including into C programs.
- --rsa
Generate RSA key.
When combined with --generate-privkey generates an RSA private key.
NOTE: THIS OPTION IS DEPRECATED
- --dsa
Generate DSA key.
When combined with --generate-privkey generates a DSA private key.
NOTE: THIS OPTION IS DEPRECATED
- --ecc
Generate ECC (ECDSA) key.
When combined with --generate-privkey generates an elliptic curve private key to be used with ECDSA.
NOTE: THIS OPTION IS DEPRECATED
- --ecdsa
This is an alias for the --ecc option.
NOTE: THIS OPTION IS DEPRECATED
- --hash=str
Hash algorithm to use for signing.
Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512, SHA3-224, SHA3-256, SHA3-384, SHA3-512.
- --salt-size=num
Specify the RSA-PSS key default salt size. This option takes an integer number as its argument.
Typical keys shouldn't set or restrict this option.
- --label=str
Specify the RSA-OAEP label, encoded in hexadecimal.
Typical keys shouldn't set or restrict this option.
- --inder, --no-inder
Use DER format for input certificates, private keys, and DH parameters . The no-inder form will disable the option.
The input files will be assumed to be in DER or RAW format. Unlike options that in PEM input would allow multiple input data (e.g. multiple certificates), when reading in DER format a single data structure is read.
- --inraw
This is an alias for the --inder option.
- --outder, --no-outder
Use DER format for output certificates, private keys, and DH parameters. The no-outder form will disable the option.
The output will be in DER or RAW format.
- --outraw
This is an alias for the --outder option.
- --disable-quick-random
No effect.
NOTE: THIS OPTION IS DEPRECATED
- --template=str
Template file to use for non-interactive operation.
- --stdout-info
Print information to stdout instead of stderr.
- --ask-pass
Enable interaction for entering password when in batch mode.
This option will enable interaction to enter password when in batch mode. That is useful when the template option has been specified.
- --pkcs-cipher=cipher
Cipher to use for PKCS #8 and #12 operations.
Cipher may be one of 3des, 3des-pkcs12, aes-128, aes-192, aes-256, rc2-40, arcfour.
- --provider=str
Specify the PKCS #11 provider library.
This will override the default options in /etc/gnutls/pkcs11.conf
- --text, --no-text
Output textual information before PEM-encoded certificates, private keys, etc. The no-text form will disable the option. This option is enabled by default.
Output textual information before PEM-encoded data
- -v arg, --version=arg
Output version of program and exit. The default mode is `v', a simple version. The `c' mode will print copyright information and `n' will print the full copyright notice.
- -h, --help
Display usage information and exit.
- -!, --more-help
Pass the extended usage information through a pager.
Files
Certtool's template file format
A template file can be used to avoid the interactive questions of certtool. Initially create a file named 'cert.cfg' that contains the information about the certificate. The template can be used as below:
$ certtool --generate-certificate --load-privkey key.pem --template cert.cfg --outfile cert.pem --load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem
An example certtool template file that can be used to generate a certificate request or a self signed certificate follows.
# X.509 Certificate options # # DN options # The organization of the subject. organization = "Koko inc." # The organizational unit of the subject. unit = "sleeping dept." # The locality of the subject. # locality = # The state of the certificate owner. state = "Attiki" # The country of the subject. Two letter code. country = GR # The common name of the certificate owner. cn = "Cindy Lauper" # A user id of the certificate owner. #uid = "clauper" # Set domain components #dc = "name" #dc = "domain" # If the supported DN OIDs are not adequate you can set # any OID here. # For example set the X.520 Title and the X.520 Pseudonym # by using OID and string pairs. #dn_oid = "2.5.4.12 Dr." #dn_oid = "2.5.4.65 jackal" # This is deprecated and should not be used in new # certificates. # pkcs9_email = "none@none.org" # An alternative way to set the certificate's distinguished name directly # is with the "dn" option. The attribute names allowed are: # C (country), street, O (organization), OU (unit), title, CN (common name), # L (locality), ST (state), placeOfBirth, gender, countryOfCitizenship, # countryOfResidence, serialNumber, telephoneNumber, surName, initials, # generationQualifier, givenName, pseudonym, dnQualifier, postalCode, name, # businessCategory, DC, UID, jurisdictionOfIncorporationLocalityName, # jurisdictionOfIncorporationStateOrProvinceName, # jurisdictionOfIncorporationCountryName, XmppAddr, and numeric OIDs. #dn = "cn = Nikos,st = New Something,C=GR,surName=Mavrogiannopoulos,2.5.4.9=Arkadias" # The serial number of the certificate # The value is in decimal (i.e. 1963) or hex (i.e. 0x07ab). # Comment the field for a random serial number. serial = 007 # In how many days, counting from today, this certificate will expire. # Use -1 if there is no expiration date. expiration_days = 700 # Alternatively you may set concrete dates and time. The GNU date string # formats are accepted. See: # https://www.gnu.org/software/tar/manual/html_node/Date-input-formats.html #activation_date = "2004-02-29 16:21:42" #expiration_date = "2025-02-29 16:24:41" # X.509 v3 extensions # A dnsname in case of a WWW server. #dns_name = "www.none.org" #dns_name = "www.morethanone.org" # An othername defined by an OID and a hex encoded string #other_name = "1.3.6.1.5.2.2 302ca00d1b0b56414e5245494e2e4f5247a11b3019a006020400000002a10f300d1b047269636b1b0561646d696e" #other_name_utf8 = "1.2.4.5.6 A UTF8 string" #other_name_octet = "1.2.4.5.6 A string that will be encoded as ASN.1 octet string" # Allows writing an XmppAddr Identifier #xmpp_name = juliet@im.example.com # Names used in PKINIT #krb5_principal = user@REALM.COM #krb5_principal = HTTP/user@REALM.COM # A subject alternative name URI #uri = "https://www.example.com" # An IP address in case of a server. #ip_address = "192.168.1.1" # An email in case of a person email = "none@none.org" # TLS feature (rfc7633) extension. That can is used to indicate mandatory TLS # extension features to be provided by the server. In practice this is used # to require the Status Request (extid: 5) extension from the server. That is, # to require the server holding this certificate to provide a stapled OCSP response. # You can have multiple lines for multiple TLS features. # To ask for OCSP status request use: #tls_feature = 5 # Challenge password used in certificate requests challenge_password = 123456 # Password when encrypting a private key #password = secret # An URL that has CRLs (certificate revocation lists) # available. Needed in CA certificates. #crl_dist_points = "https://www.getcrl.crl/getcrl/" # Whether this is a CA certificate or not #ca # Subject Unique ID (in hex) #subject_unique_id = 00153224 # Issuer Unique ID (in hex) #issuer_unique_id = 00153225 #### Key usage # The following key usage flags are used by CAs and end certificates # Whether this certificate will be used to sign data (needed # in TLS DHE ciphersuites). This is the digitalSignature flag # in RFC5280 terminology. signing_key # Whether this certificate will be used to encrypt data (needed # in TLS RSA ciphersuites). Note that it is preferred to use different # keys for encryption and signing. This is the keyEncipherment flag # in RFC5280 terminology. encryption_key # Whether this key will be used to sign other certificates. The # keyCertSign flag in RFC5280 terminology. #cert_signing_key # Whether this key will be used to sign CRLs. The # cRLSign flag in RFC5280 terminology. #crl_signing_key # The keyAgreement flag of RFC5280. Its purpose is loosely # defined. Not use it unless required by a protocol. #key_agreement # The dataEncipherment flag of RFC5280. Its purpose is loosely # defined. Not use it unless required by a protocol. #data_encipherment # The nonRepudiation flag of RFC5280. Its purpose is loosely # defined. Not use it unless required by a protocol. #non_repudiation #### Extended key usage (key purposes) # The following extensions are used in an end certificate # to clarify its purpose. Some CAs also use it to indicate # the types of certificates they are purposed to sign. # Whether this certificate will be used for a TLS client; # this sets the id-kp-clientAuth (1.3.6.1.5.5.7.3.2) of # extended key usage. #tls_www_client # Whether this certificate will be used for a TLS server; # this sets the id-kp-serverAuth (1.3.6.1.5.5.7.3.1) of # extended key usage. #tls_www_server # Whether this key will be used to sign code. This sets the # id-kp-codeSigning (1.3.6.1.5.5.7.3.3) of extended key usage # extension. #code_signing_key # Whether this key will be used to sign OCSP data. This sets the # id-kp-OCSPSigning (1.3.6.1.5.5.7.3.9) of extended key usage extension. #ocsp_signing_key # Whether this key will be used for time stamping. This sets the # id-kp-timeStamping (1.3.6.1.5.5.7.3.8) of extended key usage extension. #time_stamping_key # Whether this key will be used for email protection. This sets the # id-kp-emailProtection (1.3.6.1.5.5.7.3.4) of extended key usage extension. #email_protection_key # Whether this key will be used for IPsec IKE operations (1.3.6.1.5.5.7.3.17). #ipsec_ike_key ## adding custom key purpose OIDs # for microsoft smart card logon # key_purpose_oid = 1.3.6.1.4.1.311.20.2.2 # for email protection # key_purpose_oid = 1.3.6.1.5.5.7.3.4 # for any purpose (must not be used in intermediate CA certificates) # key_purpose_oid = 2.5.29.37.0 ### end of key purpose OIDs ### Adding arbitrary extensions # This requires to provide the extension OIDs, as well as the extension data in # hex format. The following two options are available since GnuTLS 3.5.3. #add_extension = "1.2.3.4 0x0AAB01ACFE" # As above but encode the data as an octet string #add_extension = "1.2.3.4 octet_string(0x0AAB01ACFE)" # For portability critical extensions shouldn't be set to certificates. #add_critical_extension = "5.6.7.8 0x1AAB01ACFE" # When generating a certificate from a certificate # request, then honor the extensions stored in the request # and store them in the real certificate. #honor_crq_extensions # Alternatively only specific extensions can be copied. #honor_crq_ext = 2.5.29.17 #honor_crq_ext = 2.5.29.15 # Path length constraint. Sets the maximum number of # certificates that can be used to certify this certificate. # (i.e. the certificate chain length) #path_len = -1 #path_len = 2 # OCSP URI # ocsp_uri = https://my.ocsp.server/ocsp # CA issuers URI # ca_issuers_uri = https://my.ca.issuer # Certificate policies #policy1 = 1.3.6.1.4.1.5484.1.10.99.1.0 #policy1_txt = "This is a long policy to summarize" #policy1_url = https://www.example.com/a-policy-to-read #policy2 = 1.3.6.1.4.1.5484.1.10.99.1.1 #policy2_txt = "This is a short policy" #policy2_url = https://www.example.com/another-policy-to-read # The number of additional certificates that may appear in a # path before the anyPolicy is no longer acceptable. #inhibit_anypolicy_skip_certs 1 # Name constraints # DNS #nc_permit_dns = example.com #nc_exclude_dns = test.example.com # EMAIL #nc_permit_email = "nmav@ex.net" # Exclude subdomains of example.com #nc_exclude_email = .example.com # Exclude all e-mail addresses of example.com #nc_exclude_email = example.com # IP #nc_permit_ip = 192.168.0.0/16 #nc_exclude_ip = 192.168.5.0/24 #nc_permit_ip = fc0a:eef2:e7e7:a56e::/64 # Options for proxy certificates #proxy_policy_language = 1.3.6.1.5.5.7.21.1 # Options for generating a CRL # The number of days the next CRL update will be due. # next CRL update will be in 43 days #crl_next_update = 43 # this is the 5th CRL by this CA # The value is in decimal (i.e. 1963) or hex (i.e. 0x07ab). # Comment the field for a time-based number. # Time-based CRL numbers generated in GnuTLS 3.6.3 and later # are significantly larger than those generated in previous # versions. Since CRL numbers need to be monotonic, you need # to specify the CRL number here manually if you intend to # downgrade to an earlier version than 3.6.3 after publishing # the CRL as it is not possible to specify CRL numbers greater # than 2**63-2 using hex notation in those versions. #crl_number = 5 # Specify the update dates more precisely. #crl_this_update_date = "2004-02-29 16:21:42" #crl_next_update_date = "2025-02-29 16:24:41" # The date that the certificates will be made seen as # being revoked. #crl_revocation_date = "2025-02-29 16:24:41"
Examples
Generating private keys
To create an RSA private key, run:
$ certtool --generate-privkey --outfile key.pem --rsa
To create a DSA or elliptic curves (ECDSA) private key use the above command combined with 'dsa' or 'ecc' options.
Generating certificate requests
To create a certificate request (needed when the certificate is issued by another party), run:
certtool --generate-request --load-privkey key.pem --outfile request.pem
If the private key is stored in a smart card you can generate a request by specifying the private key object URL.
$ ./certtool --generate-request --load-privkey "pkcs11:..." --load-pubkey "pkcs11:..." --outfile request.pem
Generating a self-signed certificate
To create a self signed certificate, use the command:
$ certtool --generate-privkey --outfile ca-key.pem $ certtool --generate-self-signed --load-privkey ca-key.pem --outfile ca-cert.pem
Note that a self-signed certificate usually belongs to a certificate authority, that signs other certificates.
Generating a certificate
To generate a certificate using the previous request, use the command:
$ certtool --generate-certificate --load-request request.pem --outfile cert.pem --load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem
To generate a certificate using the private key only, use the command:
$ certtool --generate-certificate --load-privkey key.pem --outfile cert.pem --load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem
Certificate information
To view the certificate information, use:
$ certtool --certificate-info --infile cert.pem
Changing the certificate format
To convert the certificate from PEM to DER format, use:
$ certtool --certificate-info --infile cert.pem --outder --outfile cert.der
PKCS #12 structure generation
To generate a PKCS #12 structure using the previous key and certificate, use the command:
$ certtool --load-certificate cert.pem --load-privkey key.pem --to-p12 --outder --outfile key.p12
Some tools (reportedly web browsers) have problems with that file because it does not contain the CA certificate for the certificate. To work around that problem in the tool, you can use the --load-ca-certificate parameter as follows:
$ certtool --load-ca-certificate ca.pem --load-certificate cert.pem --load-privkey key.pem --to-p12 --outder --outfile key.p12
Obtaining Diffie-Hellman parameters
To obtain the RFC7919 parameters for Diffie-Hellman key exchange, use the command:
$ certtool --get-dh-params --outfile dh.pem --sec-param medium
Verifying a certificate
To verify a certificate in a file against the system's CA trust store use the following command:
$ certtool --verify --infile cert.pem
It is also possible to simulate hostname verification with the following options:
$ certtool --verify --verify-hostname www.example.com --infile cert.pem
Proxy certificate generation
Proxy certificate can be used to delegate your credential to a temporary, typically short-lived, certificate. To create one from the previously created certificate, first create a temporary key and then generate a proxy certificate for it, using the commands:
$ certtool --generate-privkey > proxy-key.pem $ certtool --generate-proxy --load-ca-privkey key.pem --load-privkey proxy-key.pem --load-certificate cert.pem --outfile proxy-cert.pem
Certificate revocation list generation
To create an empty Certificate Revocation List (CRL) do:
$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem --load-ca-certificate x509-ca.pem
To create a CRL that contains some revoked certificates, place the certificates in a file and use --load-certificate as follows:
$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem --load-ca-certificate x509-ca.pem --load-certificate revoked-certs.pem
To verify a Certificate Revocation List (CRL) do:
$ certtool --verify-crl --load-ca-certificate x509-ca.pem < crl.pem
Exit Status
One of the following exit values will be returned:
- 0 (EXIT_SUCCESS)
Successful program execution.
- 1 (EXIT_FAILURE)
The operation failed or the command syntax was not valid.
See Also
p11tool (1), psktool (1), srptool (1)
Authors
Copyright
Copyright (C) 2020-2023 Free Software Foundation, and others all rights reserved. This program is released under the terms of the GNU General Public License, version 3 or later
Bugs
Please send bug reports to: bugs@gnutls.org
Referenced By
danetool(1), jcat-tool(1), libnbd(3), ocsptool(1), p11tool(1), psktool(1), tpmtool(1).